Mayo Clinic Proceedings Home

Objectively Assessed Cardiorespiratory Fitness and All-Cause Mortality Risk

An Updated Meta-analysis of 37 Cohort Studies Involving 2,258,029 Participants
  • Jari A. Laukkanen
    Correspondence: Address to Jari A. Laukkanen, MD, PhD, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, P.O. Box 100, FI-70029 Kuopio University Hospital, Finland
    Central Finland Health Care District Hospital District, Department of Medicine, Jyväskylä, Finland

    Institute of Clinical Medicine, Department of Internal Medicine, and the Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
    Search for articles by this author
  • Nzechukwu M. Isiozor
    Institute of Clinical Medicine, Department of Internal Medicine, and the Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
    Search for articles by this author
  • Setor K. Kunutsor
    Central Finland Health Care District Hospital District, Department of Medicine, Jyväskylä, Finland

    National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK

    Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Learning & Research Building (Level 1), Southmead Hospital, Bristol, UK
    Search for articles by this author



      To detail the magnitude and specificity of the association between cardiorespiratory fitness (CRF) and all-cause mortality risk.


      Cohort studies with at least 1 year of follow-up were sought from inception until December 2021 in MEDLINE, Embase, Web of Science, and a manual search of relevant articles. Relative risks (RRs) with 95% CIs were pooled using random-effects models. Quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation tool.


      A total of 37 unique studies comprising of 2,258,029 participants with 108,613 all-cause mortality events were eligible. The pooled multivariable-adjusted RR for all-cause mortality comparing the top vs bottom tertiles of CRF levels was 0.55 (95% CI, 0.50 to 0.61). When CRF was expressed in metabolic equivalent task (MET) units, the corresponding pooled RR was 0.56 (95% CI, 0.50 to 0.62). For every 1-MET increase in CRF, the RR for all-cause mortality was 0.89 (95% CI, 0.86 to 0.92). Strength of the association did not differ by publication year, age, sex, follow-up duration, CRF assessment method, or risk of bias.


      Aggregate analysis of observational cohort studies confirms a strong inverse and independent association between CRF and all-cause mortality risk. The results suggest that guideline bodies should consider the inclusion of CRF in standard risk panels for mortality risk assessment.

      Abbreviations and Acronyms:

      CPX (cardiopulmonary exercise testing), CRF (cardiorespiratory fitness), CVD (cardiovascular disease), HR (hazard ratio), LV (left ventricular), MET (metabolic equivalent), OR (odds ratio), PA (physical activity), RR (relative risk)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Cheng W.
        • Zhang Z.
        • Cheng W.
        • Yang C.
        • Diao L.
        • Liu W.
        Associations of leisure-time physical activity with cardiovascular mortality: a systematic review and meta-analysis of 44 prospective cohort studies.
        Eur J Prev Cardiol. 2018; 25: 1864-1872
        • Lear S.A.
        • Hu W.
        • Rangarajan S.
        • et al.
        The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study.
        Lancet. 2017; 390: 2643-2654
        • Kyu H.H.
        • Bachman V.F.
        • Alexander L.T.
        • et al.
        Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013.
        BMJ. 2016; 354: i3857
        • Kunutsor S.K.
        • Seidu S.
        • Makikallio T.H.
        • Dey R.S.
        • Laukkanen J.A.
        Physical activity and risk of atrial fibrillation in the general population: meta-analysis of 23 cohort studies involving about 2 million participants.
        Eur J Epidemiol. 2021; 36: 259-274
        • Kunutsor S.K.
        • Makikallio T.H.
        • Seidu S.
        • et al.
        Physical activity and risk of venous thromboembolism: systematic review and meta-analysis of prospective cohort studies.
        Eur J Epidemiol. 2020; 35: 431-442
        • Fletcher G.F.
        • Landolfo C.
        • Niebauer J.
        • Ozemek C.
        • Arena R.
        • Lavie C.J.
        Promoting physical activity and exercise: JACC health promotion series.
        J Am Coll Cardiol. 2018; 72: 1622-1639
        • Sanchis-Gomar F.
        • Lavie C.J.
        • Marin J.
        • et al.
        Exercise effects on cardiovascular disease: from basic aspects to clinical evidence.
        Cardiovasc Res. 2021;
        • Lavie C.J.
        • Ozemek C.
        • Carbone S.
        • Katzmarzyk P.T.
        • Blair S.N.
        Sedentary behavior, exercise, and cardiovascular health.
        Circ Res. 2019; 124: 799-815
        • Kodama S.
        • Saito K.
        • Tanaka S.
        • et al.
        Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis.
        JAMA. 2009; 301: 2024-2035
        • Artero E.G.
        • Lee D.C.
        • Lavie C.J.
        • et al.
        Effects of muscular strength on cardiovascular risk factors and prognosis.
        J Cardiopulm Rehabil Prev. 2012; 32: 351-358
        • Noonan V.
        • Dean E.
        Submaximal exercise testing: clinical application and interpretation.
        Phys Ther. 2000; 80: 782-807
        • Ross R.
        • Blair S.N.
        • Arena R.
        • et al.
        Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association.
        Circulation. 2016; 134: e653-e699
        • Laukkanen J.A.
        • Kunutsor S.K.
        • Yates T.
        • et al.
        Prognostic relevance of cardiorespiratory fitness as assessed by submaximal exercise testing for all-cause mortality: a UK Biobank prospective study.
        Mayo Clin Proc. 2020; 95: 867-878
        • Khan H.
        • Kunutsor S.
        • Rauramaa R.
        • et al.
        Cardiorespiratory fitness and risk of heart failure: a population-based follow-up study.
        Eur J Heart Fail. 2014; 16: 180-188
        • Zaccardi F.
        • O'Donovan G.
        • Webb D.R.
        • et al.
        Cardiorespiratory fitness and risk of type 2 diabetes mellitus: a 23-year cohort study and a meta-analysis of prospective studies.
        Atherosclerosis. 2015; 243: 131-137
        • Laukkanen J.A.
        • Lavie C.J.
        • Khan H.
        • Kurl S.
        • Kunutsor S.K.
        Cardiorespiratory fitness and the risk of serious ventricular arrhythmias: a prospective cohort study.
        Mayo Clin Proc. 2019; 94: 833-841
        • Brawner C.A.
        • Ehrman J.K.
        • Bole S.
        • et al.
        Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019.
        Mayo Clin Proc. 2021; 96: 32-39
        • Laukkanen J.A.
        • Kurl S.
        • Salonen R.
        • Rauramaa R.
        • Salonen J.T.
        The predictive value of cardiorespiratory fitness for cardiovascular events in men with various risk profiles: a prospective population-based cohort study.
        Eur Heart J. 2004; 25: 1428-1437
        • Gupta S.
        • Rohatgi A.
        • Ayers C.R.
        • et al.
        Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality.
        Circulation. 2011; 123: 1377-1383
        • Conroy R.M.
        • Pyorala K.
        • Fitzgerald A.P.
        • et al.
        Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project.
        Eur Heart J. 2003; 24: 987-1003
        • D'Agostino Sr., R.B.
        • Grundy S.
        • Sullivan L.M.
        • Wilson P.
        • CHD Risk Prediction Group
        Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation.
        JAMA. 2001; 286: 180-187
        • Harber M.P.
        • Kaminsky L.A.
        • Arena R.
        • et al.
        Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009.
        Prog Cardiovasc Dis. 2017; 60: 11-20
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6e1000097
        • Stroup D.F.
        • Berlin J.A.
        • Morton S.C.
        • et al.
        Meta-analysis of observational studies in epidemiology.
        JAMA. 2000; 283: 2008-2012
        • Sterne J.A.
        • Hernan M.A.
        • Reeves B.C.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; 355: i4919
        • Guyatt G.
        • Oxman A.D.
        • Akl E.A.
        • et al.
        GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables.
        J Clin Epidemiol. 2011; 64: 383-394
        • Chêne G.
        • Thompson S.G.
        Methods for summarizing the risk associations of quantitative variables in epidemiologic studies in a consistent form.
        Am J Epidemiol. 1996; 144: 610-621
        • Greenland S.
        • Longnecker M.P.
        Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.
        Am J Epidemiol. 1992; 135: 1301-1309
        • Kunutsor S.K.
        • Apekey T.A.
        • Khan H.
        Liver enzymes and risk of cardiovascular disease in the general population: a meta-analysis of prospective cohort studies.
        Atherosclerosis. 2014; 236: 7-17
        • Kunutsor S.K.
        • Apekey T.A.
        • Cheung B.M.
        Gamma-glutamyltransferase and risk of hypertension: a systematic review and dose-response meta-analysis of prospective evidence.
        J Hypertens. 2015; 33: 2373-2381
        • Kunutsor S.K.
        • Isiozor N.M.
        • Khan H.
        • Laukkanen J.A.
        Handgrip strength — a risk indicator for type 2 diabetes: systematic review and meta-analysis of observational cohort studies.
        Diabetes Metab Res Rev. 2021; 37e3365
        • Kunutsor S.K.
        • Seidu S.
        • Voutilainen A.
        • Blom A.W.
        • Laukkanen J.A.
        Handgrip strength-a risk indicator for future fractures in the general population: findings from a prospective study and meta-analysis of 19 prospective cohort studies.
        Geroscience. 2021; 43: 869-880
        • Chen H.G.
        • Sheng L.T.
        • Zhang Y.B.
        • et al.
        Association of vitamin K with cardiovascular events and all-cause mortality: a systematic review and meta-analysis.
        Eur J Nutr. 2019; 58: 2191-2205
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188
        • Kunutsor S.K.
        • Isiozor N.M.
        • Voutilainen A.
        • Laukkanen J.A.
        Handgrip strength and risk of cognitive outcomes: new prospective study and meta-analysis of 16 observational cohort studies..
        GeroScience. 2022;
        • Kunutsor S.K.
        • Seidu S.
        • Laukkanen J.A.
        Physical activity reduces the risk of pneumonia: systematic review and meta-analysis of 10 prospective studies involving 1,044,492 participants.
        Geroscience. 2022; 44: 519-532
        • Jette M.
        • Sidney K.
        • Blumchen G.
        Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity.
        Clin Cardiol. 1990; 13: 555-565
        • Higgins J.P.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560
        • Higgins J.P.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Stat Med. 2002; 21: 1539-1558
        • Thompson S.G.
        • Sharp S.J.
        Explaining heterogeneity in meta-analysis: a comparison of methods.
        Stat Med. 1999; 18: 2693-2708
        • Begg C.B.
        • Mazumdar M.
        Operating characteristics of a rank correlation test for publication bias.
        Biometrics. 1994; 50: 1088-1101
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Duval S.
        • Tweedie R.
        Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.
        Biometrics. 2000; 56: 455-463
        • Bahls M.
        • Groß S.
        • Baumeister S.E.
        • et al.
        Association of domains specific physical activity and cardiorespiratory fitness with all cause and cause-specific mortality in two population-based cohort studies.
        Sci Rep. 2018; 8: 16066
        • Blaha M.J.
        • Hung R.K.
        • Dardari Z.
        • et al.
        Age-dependent prognostic value of exercise capacity and derivation of fitness-associated biologic age.
        Heart. 2016; 102: 431-437
        • Byun W.
        • Sieverdes J.C.
        • Sui X.
        • et al.
        Effect of positive health factors and all-cause mortality in men.
        Med Sci Sports Exerc. 2010; 42: 1632-1638
        • Cao C.
        • Yang L.
        • Cade W.T.
        • et al.
        Cardiorespiratory fitness is associated with early death among healthy young and middle-aged baby boomers and generation Xers.
        Am J Med. 2020; 133: 961-968e963
        • Crump C.
        • Sundquist J.
        • Winkleby M.A.
        • Sundquist K.
        Interactive effects of aerobic fitness, strength, and obesity on mortality in men.
        Am J Prev Med. 2017; 52: 353-361
        • Daugherty S.L.
        • Magid D.J.
        • Kikla J.R.
        • et al.
        Gender differences in the prognostic value of exercise treadmill test characteristics.
        Am Heart J. 2011; 161: 908-914
        • Davidson T.
        • Vainshelboim B.
        • Kokkinos P.
        • Myers J.
        • Ross R.
        Cardiorespiratory fitness versus physical activity as predictors of all-cause mortality in men.
        Am Heart J. 2018; 196: 156-162
        • Ekblom-Bak E.
        • Ekblom B.
        • Soderling J.
        • et al.
        Sex- and age-specific associations between cardiorespiratory fitness, CVD morbidity and all-cause mortality in 266.109 adults.
        Prev Med. 2019; 127: 105799
        • Erikssen G.
        • Liestol K.
        • Bjornholt J.
        • Thaulow E.
        • Sandvik L.
        • Erikssen J.
        Changes in physical fitness and changes in mortality.
        Lancet. 1998; 352: 759-762
        • Evenson K.R.
        • Stevens J.
        • Thomas R.
        • Cai J.
        Effect of cardiorespiratory fitness on mortality among hypertensive and normotensive women and men.
        Epidemiology. 2004; 15: 565-572
        • Farrell S.W.
        • Braun L.
        • Barlow C.E.
        • Cheng Y.J.
        • Blair S.N.
        The relation of body mass index, cardiorespiratory fitness, and all-cause mortality in women.
        Obes Res. 2002; 10: 417-423
        • Goraya T.Y.
        • Jacobsen S.J.
        • Pellikka P.A.
        • et al.
        Prognostic value of treadmill exercise testing in elderly persons.
        Ann Intern Med. 2000; 132: 862-870
        • Gulati M.
        • Pandey D.K.
        • Arnsdorf M.F.
        • et al.
        Exercise capacity and the risk of death in women: the St James Women Take Heart Project.
        Circulation. 2003; 108: 1554-1559
        • Hussain N.
        • Gersh B.J.
        • Gonzalez Carta K.
        • et al.
        Impact of cardiorespiratory fitness on frequency of atrial fibrillation, stroke, and all-cause mortality.
        Am J Cardiol. 2018; 121: 41-49
        • Imboden M.T.
        • Harber M.P.
        • Whaley M.H.
        • Finch W.H.
        • Bishop D.L.
        • Kaminsky L.A.
        Cardiorespiratory fitness and mortality in healthy men and women.
        J Am Coll Cardiol. 2018; 72: 2283-2292
        • Jensen M.T.
        • Holtermann A.
        • Bay H.
        • Gyntelberg F.
        Cardiorespiratory fitness and death from cancer: a 42-year follow-up from the Copenhagen Male Study.
        Br J Sports Med. 2017; 51: 1364-1369
        • Kohl H.W.
        • Gordon N.F.
        • Villegas J.A.
        • Blair S.N.
        Cardiorespiratory fitness, glycemic status, and mortality risk in men.
        Diabetes Care. 1992; 15: 184-192
        • Korpelainen R.
        • Lamsa J.
        • Kaikkonen K.M.
        • et al.
        Exercise capacity and mortality - a follow-up study of 3033 subjects referred to clinical exercise testing.
        Ann Med. 2016; 48: 359-366
        • Kunutsor S.K.
        • Khan H.
        • Laukkanen T.
        • Laukkanen J.A.
        Joint associations of sauna bathing and cardiorespiratory fitness on cardiovascular and all-cause mortality risk: a long-term prospective cohort study.
        Ann Med. 2018; 50: 139-146
        • Ladenvall P.
        • Persson C.U.
        • Mandalenakis Z.
        • et al.
        Low aerobic capacity in middle-aged men associated with increased mortality rates during 45 years of follow-up.
        Eur J Prev Cardiol. 2016; 23: 1557-1564
        • Lai S.
        • Kaykha A.
        • Yamazaki T.
        • et al.
        Treadmill scores in elderly men.
        J Am Coll Cardiol. 2004; 43: 606-615
        • Laukkanen J.A.
        • Kunutsor S.K.
        • Yates T.
        • et al.
        Prognostic relevance of cardiorespiratory fitness as assessed by submaximal exercise testing for all-cause mortality: a UK Biobank prospective study.
        Mayo Clin Proc. 2020; 95: 867-878
        • Lee C.D.
        • Blair S.N.
        • Jackson A.S.
        Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men.
        Am J Clin Nutr. 1999; 69: 373-380
        • Letnes J.M.
        • Dalen H.
        • Vesterbekkmo E.K.
        • Wisloff U.
        • Nes B.M.
        Peak oxygen uptake and incident coronary heart disease in a healthy population: the HUNT Fitness Study.
        Eur Heart J. 2019; 40: 1633-1639
        • Lu Z.
        • Woo J.
        • Kwok T.
        The effect of physical activity and cardiorespiratory fitness on all-cause mortality in Hong Kong Chinese older adults.
        J Gerontol A Biol Sci Med Sci. 2018; 73: 1132-1137
        • Mandsager K.
        • Harb S.
        • Cremer P.
        • Phelan D.
        • Nissen S.E.
        • Jaber W.
        Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing.
        JAMA Netw Open. 2018; 1e183605
        • Miller G.J.
        • Cooper J.A.
        • Beckles G.L.
        Cardiorespiratory fitness, all-cause mortality, and risk of cardiovascular disease in Trinidadian men — the St James survey.
        Int J Epidemiol. 2005; 34: 1387-1394
        • Park M.S.
        • Chung S.Y.
        • Chang Y.
        • Kim K.
        Physical activity and physical fitness as predictors of all-cause mortality in Korean men.
        J Korean Med Sci. 2009; 24: 13-19
        • Ramos P.S.
        • Araujo C.G.
        Cardiorespiratory optimal point during exercise testing as a predictor of all-cause mortality.
        Rev Port Cardiol. 2017; 36: 261-269
        • Roger V.L.
        • Jacobsen S.J.
        • Pellikka P.A.
        • Miller T.D.
        • Bailey K.R.
        • Gersh B.J.
        Prognostic value of treadmill exercise testing: a population-based study in Olmsted County, Minnesota.
        Circulation. 1998; 98: 2836-2841
        • Sandvik L.
        • Erikssen J.
        • Thaulow E.
        • Erikssen G.
        • Mundal R.
        • Rodahl K.
        Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men.
        N Engl J Med. 1993; 328: 533-537
        • Sawada S.
        • Muto T.
        Prospective study on the relationship between physical fitness and all-cause mortality in Japanese men. [In Japanese.
        Nihon Koshu Eisei Zasshi. 1999; 46: 113-121
        • Shah R.V.
        • Murthy V.L.
        • Colangelo L.A.
        • et al.
        Association of fitness in young adulthood with survival and cardiovascular risk: the Coronary Artery Risk Development in Young Adults (CARDIA) study.
        JAMA Intern Med. 2016; 176: 87-95
        • Shuval K.
        • Finley C.E.
        • Barlow C.E.
        • Nguyen B.T.
        • Njike V.Y.
        • Pettee Gabriel K.
        Independent and joint effects of sedentary time and cardiorespiratory fitness on all-cause mortality: the Cooper Center Longitudinal Study.
        BMJ Open. 2015; 5e008956
        • Sipila K.
        • Tikkakoski A.
        • Alanko S.
        • et al.
        Combination of low blood pressure response, low exercise capacity and slow heart rate recovery during an exercise test significantly increases mortality risk.
        Ann Med. 2019; 51: 390-396
        • Stevens J.
        • Evenson K.R.
        • Thomas O.
        • Cai J.
        • Thomas R.
        Associations of fitness and fatness with mortality in Russian and American men in the lipids research clinics study.
        Int J Obes Relat Metab Disord. 2004; 28: 1463-1470
        • Han M.
        • Qie R.
        • Shi X.
        • et al.
        Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: dose-response meta-analysis of cohort studies.
        Br J Sports Med. 2022;
        • Bouchard C.
        Genomic predictors of trainability.
        Exp Physiol. 2012; 97: 347-352
        • Church T.S.
        • Earnest C.P.
        • Skinner J.S.
        • Blair S.N.
        Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial.
        JAMA. 2007; 297: 2081-2091
        • Duscha B.D.
        • Slentz C.A.
        • Johnson J.L.
        • et al.
        Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease.
        Chest. 2005; 128: 2788-2793
        • Tran Z.V.
        • Weltman A.
        • Glass G.V.
        • Mood D.P.
        The effects of exercise on blood lipids and lipoproteins: a meta-analysis of studies.
        Med Sci Sports Exerc. 1983; 15: 393-402
        • deFilippi C.R.
        • de Lemos J.A.
        • Tkaczuk A.T.
        • et al.
        Physical activity, change in biomarkers of myocardial stress and injury, and subsequent heart failure risk in older adults.
        J Am Coll Cardiol. 2012; 60: 2539-2547
        • Leaf D.A.
        The effect of physical exercise on reverse cholesterol transport.
        Metabolism. 2003; 52: 950-957
        • Ford E.S.
        Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults.
        Epidemiology. 2002; 13: 561-568
        • Church T.S.
        • Barlow C.E.
        • Earnest C.P.
        • Kampert J.B.
        • Priest E.L.
        • Blair S.N.
        Associations between cardiorespiratory fitness and C-reactive protein in men.
        Arterioscler Thromb Vasc Biol. 2002; 22: 1869-1876
        • Hambrecht R.
        • Wolf A.
        • Gielen S.
        • et al.
        Effect of exercise on coronary endothelial function in patients with coronary artery disease.
        N Engl J Med. 2000; 342: 454-460
        • Niebauer J.
        • Hambrecht R.
        • Velich T.
        • et al.
        Attenuated progression of coronary artery disease after 6 years of multifactorial risk intervention: role of physical exercise.
        Circulation. 1997; 96: 2534-2541
        • Tulppo M.P.
        • Makikallio T.H.
        • Seppanen T.
        • Laukkanen R.T.
        • Huikuri H.V.
        Vagal modulation of heart rate during exercise: effects of age and physical fitness.
        Am J Physiol. 1998; 274: H424-H429
        • Pelliccia A.
        • Sharma S.
        • Gati S.
        • et al.
        2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease: the task force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC).
        Eur Heart J. 2020; 42: 17-96
        • Wen H.
        • Wang L.
        Reducing effect of aerobic exercise on blood pressure of essential hypertensive patients: a meta-analysis.
        Medicine (Baltimore). 2017; 96e6150
        • Hieda M.
        • Sarma S.
        • Hearon Jr., C.M.
        • et al.
        One-year committed exercise training reverses abnormal left ventricular myocardial stiffness in patients with stage B heart failure with preserved ejection fraction.
        Circulation. 2021; 144: 934-946
        • Bhella P.S.
        • Hastings J.L.
        • Fujimoto N.
        • et al.
        Impact of lifelong exercise "dose" on left ventricular compliance and distensibility.
        J Am Coll Cardiol. 2014; 64: 1257-1266
        • Piercy K.L.
        • Troiano R.P.
        • Ballard R.M.
        • et al.
        The physical activity guidelines for Americans.
        JAMA. 2018; 320: 2020-2028
        • Sallis R.
        • Young D.R.
        • Tartof S.Y.
        • et al.
        Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients.
        Br J Sports Med. 2021; 55: 1099-1105