Advertisement
Mayo Clinic Proceedings Home

Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies

Published:September 25, 2021DOI:https://doi.org/10.1016/j.mayocp.2021.05.030

      Abstract

      Objective

      To investigate the relations between caffeine-derived metabolites (methylxanthines) and plasma lipids by use of population-based data from 2 European countries.

      Methods

      Families were randomly selected from the general population of northern Belgium (FLEMENGHO), from August 12, 1985, until November 22, 1990, and 3 Swiss cities (SKIPOGH), from November 25, 2009, through April 4, 2013. We measured plasma concentrations (FLEMENGHO, SKIPOGH) and 24-hour urinary excretions (SKIPOGH) of 4 methylxanthines—caffeine, paraxanthine, theobromine, and theophylline—using ultra-high-performance liquid chromatography–tandem mass spectrometry. We used enzymatic methods to estimate total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels and the Friedewald equation for low-density lipoprotein cholesterol levels in plasma. We applied sex-specific mixed models to investigate associations between methylxanthines and plasma lipids, adjusting for major confounders.

      Results

      In both FLEMENGHO (N=1987; 1055 [53%] female participants) and SKIPOGH (N=990; 523 [53%] female participants), total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels increased across quartiles of plasma caffeine, paraxanthine, and theophylline (total cholesterol levels by caffeine quartiles in FLEMENGHO, male participants: 5.01±0.06 mmol/L, 5.05±0.06 mmol/L, 5.27±0.06 mmol/L, 5.62±0.06 mmol/L; female participants: 5.24±0.06 mmol/L, 5.15±0.05 mmol/L, 5.25±0.05 mmol/L, 5.42±0.05 mmol/L). Similar results were observed using urinary methylxanthines in SKIPOGH (total cholesterol levels by caffeine quartiles, male participants: 4.54±0.08 mmol/L, 4.94±0.08 mmol/L, 4.87±0.08 mmol/L, 5.27±0.09 mmol/L; female participants: 5.12±0.07 mmol/L, 5.21±0.07 mmol/L, 5.28±0.05 mmol/L, 5.28±0.07 mmol/L). Furthermore, urinary caffeine and theophylline were positively associated with high-density lipoprotein cholesterol in SKIPOGH male participants.

      Conclusion

      Plasma and urinary caffeine, paraxanthine, and theophylline were positively associated with plasma lipids, whereas the associations involving theobromine were less clear. We postulate that the positive association between caffeine intake and plasma lipids may be related to the sympathomimetic function of methylxanthines, mitigating the overall health-beneficial effect of caffeine intake.

      Abbreviations and Acronyms:

      BMI (body mass index), CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration), eGFR (estimated glomerular filtration rate), EPOGH (European Project on Genes in Hypertension), FLEMENGHO (Flemish Study on Environment, Genes and Health Outcomes), HDL (high-density lipoprotein), LOQ (limit of quantification), LDL (low-density lipoprotein), SKIPOGH (Swiss Kidney Project on Genes in Hypertension)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nelson R.H.
        Hyperlipidemia as a risk factor for cardiovascular disease.
        Prim Care. 2013; 40: 195-211
        • Jee S.H.
        • He J.
        • Appel L.J.
        • Whelton P.K.
        • Suh I.
        • Klag M.J.
        Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials.
        Am J Epidemiol. 2001; 153: 353-362
        • Cai L.
        • Ma D.
        • Zhang Y.
        • Liu Z.
        • Wang P.
        The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials.
        Eur J Clin Nutr. 2012; 66: 872-877
        • Frary C.D.
        • Johnson R.K.
        • Wang M.Q.
        Food sources and intakes of caffeine in the diets of persons in the United States.
        J Am Diet Assoc. 2005; 105: 110-113
        • Petrovic D.
        • Younes S.E.
        • Pruijm M.
        • et al.
        Relation of 24-hour urinary caffeine and caffeine metabolite excretions with self-reported consumption of coffee and other caffeinated beverages in the general population.
        Nutr Metab (Lond). 2016; 13: 81
        • Riksen N.P.
        • Smits P.
        • Rongen G.A.
        The cardiovascular effects of methylxanthines.
        Handb Exp Pharmacol. 2011; 200: 413-437
        • Ranheim T.
        • Halvorsen B.
        Coffee consumption and human health—beneficial or detrimental?—Mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus.
        Mol Nutr Food Res. 2005; 49: 274-284
        • Granner D.K.
        Hormone action & signal transduction. In: Harper's Biochemistry.
        McGraw-Hill, New York2003: 456
        • Balk L.
        • Hoekstra T.
        • Twisk J.
        Relationship between long-term coffee consumption and components of the metabolic syndrome: the Amsterdam Growth and Health Longitudinal Study.
        Eur J Epidemiol. 2009; 24: 203-209
        • Du Y.
        • Melchert H.-U.
        • Knopf H.
        • Braemer-Hauth M.
        • Gerding B.
        • Pabel E.
        Association of serum caffeine concentrations with blood lipids in caffeine-drug users and nonusers—results of German National Health Surveys from 1984 to 1999.
        Eur J Epidemiol. 2005; 20: 311-316
        • Guessous I.
        • Eap C.B.
        • Bochud M.
        Blood pressure in relation to coffee and caffeine consumption.
        Curr Hypertens Rep. 2014; 16: 468
        • Delacrétaz A.
        • Vandenberghe F.
        • Glatard A.
        • et al.
        Association between plasma caffeine and other methylxanthines and metabolic parameters in a psychiatric population treated with psychotropic drugs inducing metabolic disturbances.
        Front Psychiatry. 2018; 9: 573
        • Del Coso J.
        • Muñoz G.
        • Muñoz-Guerra J.
        Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances.
        Appl Physiol Nutr Metab. 2011; 36: 555-561
        • Van Thuyne W.
        • Delbeke F.
        Distribution of caffeine levels in urine in different sports in relation to doping control before and after the removal of caffeine from the WADA doping list.
        Int J Sports Med. 2006; 27: 745-750
        • Brand E.
        • Wang J.-G.
        • Herrmann S.-M.
        • Staessen J.A.
        An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gβ3 C825T polymorphism.
        J Hypertens. 2003; 21: 729-737
        • Wei F.-F.
        • Trenson S.
        • Thijs L.
        • et al.
        Desphospho-uncarboxylated matrix Gla protein is a novel circulating biomarker predicting deterioration of renal function in the general population.
        Nephrol Dial Transplant. 2018; 33: 1122-1128
        • Liu Y.-P.
        • Gu Y.-M.
        • Thijs L.
        • et al.
        Inactive matrix Gla protein is causally related to adverse health outcomes: a Mendelian randomization study in a Flemish population.
        Hypertension. 2015; 65: 463-470
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate [erratum appears in Ann Intern Med. 2011;155(6):408].
        Ann Intern Med. 2009; 150: 604-612
        • Lean M.
        • Han T.
        • Morrison C.
        Waist circumference as a measure for indicating need for weight management.
        BMJ. 1995; 311: 158-161
        • Petrovic D.
        • Pivin E.
        • Ponte B.
        • et al.
        Sociodemographic, behavioral and genetic determinants of allostatic load in a Swiss population-based study.
        Psychoneuroendocrinology. 2016; 67: 76-85
        • Kuznetsova T.
        • Staessen J.A.
        • Kawecka-Jaszcz K.
        • et al.
        Quality control of the blood pressure phenotype in the European Project on Genes in Hypertension.
        Blood Press Monit. 2002; 7: 215-224
        • Ponte B.
        • Pruijm M.
        • Ackermann D.
        • et al.
        Reference values and factors associated with renal resistive index in a family-based population study.
        Hypertension. 2014; 63: 136-142
        • Guessous I.
        • Bochud M.
        • Theler J.-M.
        • Gaspoz J.-M.
        • Pechère-Bertschi A.
        1999–2009 Trends in prevalence, unawareness, treatment and control of hypertension in Geneva, Switzerland.
        PloS One. 2012; 7: e39877
        • Kemperman F.
        • Silberbusch J.
        • Slaats E.H.
        • et al.
        Glomerular filtration rate estimation from plasma creatinine after inhibition of tubular secretion: relevance of the creatinine assay.
        Nephrol Dial Transplant. 1999; 14: 1247-1251
        • Gillespie B.W.
        • Chen Q.
        • Reichert H.
        • et al.
        Estimating population distributions when some data are below a limit of detection by using a reverse Kaplan-Meier estimator.
        Epidemiology. 2010; 21: S64-S70
        • Cohen M.A.
        • Ryan P.B.
        Observations less than the analytical limit of detection: a new approach.
        JAPCA. 1989; 39: 328-329
        • O'Keefe J.H.
        • Bhatti S.K.
        • Patil H.R.
        • DiNicolantonio J.J.
        • Lucan S.C.
        • Lavie C.J.
        Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality.
        J Am Coll Cardiol. 2013; 62: 1043-1051
        • Yamashita K.
        • Yatsuya H.
        • Muramatsu T.
        • Toyoshima H.
        • Murohara T.
        • Tamakoshi K.
        Association of coffee consumption with serum adiponectin, leptin, inflammation and metabolic markers in Japanese workers: a cross-sectional study.
        Nutr Diabetes. 2012; 2: e33
        • Bhaktha G.
        • Nayak B.S.
        • Mayya S.
        • Shantaram M.
        Relationship of caffeine with adiponectin and blood sugar levels in subjects with and without diabetes.
        J Clin Diagn Res. 2015; 9: BC01
        • Benowitz N.L.
        • Jacob III, P.
        • Mayan H.
        • Denaro C.
        Sympathomimetic effects of paraxanthine and caffeine in humans.
        Clin Pharmacol Ther. 1995; 58: 684-691
        • Anderson G.D.
        Gender differences in pharmacological response.
        Int Rev Neurobiol. 2008; 83: 1-10
        • Hallström H.
        • Melhus H.
        • Glynn A.
        • Lind L.
        • Syvänen A.-C.
        • Michaëlsson K.
        Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study.
        Nutr Metab (Lond). 2010; 7: 12
        • Guessous I.
        • Pruijm M.
        • Ponte B.
        • et al.
        Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions [erratum appears in Hypertension. 2016;67(2):e2].
        Hypertension. 2015; 65: 691-696
        • Semmens J.
        • Rouse I.
        • Beilin L.J.
        • Masarei J.R.
        Relationship of plasma HDL-cholesterol to testosterone, estradiol, and sex-hormone-binding globulin levels in men and women.
        Metabolism. 1983; 32: 428-432
        • Pollock B.G.
        • Wylie M.
        • Stack J.A.
        • et al.
        Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women.
        J Clin Pharmacol. 1999; 39: 936-940
        • Den Hond E.
        • Roels H.A.
        • Hoppenbrouwers K.
        • et al.
        Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek's hypothesis revisited.
        Environ Health Perspect. 2002; 110: 771-776
        • Demura S.
        • Aoki H.
        • Mizusawa T.
        • Soukura K.
        • Noda M.
        • Sato T.
        Gender differences in coffee consumption and its effects in young people.
        Food Nutr Sci. 2013; 4: 748
      1. Lindt-Sprüngli Annual Report 2017.
        • Cotton P.A.
        • Subar A.F.
        • Friday J.E.
        • Cook A.
        Dietary sources of nutrients among US adults, 1994 to 1996.
        J Am Diet Assoc. 2004; 104: 921-930
        • Smit H.J.
        Theobromine and the pharmacology of cocoa.
        Handb Exp Pharmacol. 2011; 200: 201-234
        • Eteng M.
        • Ettarh R.
        Comparative effects of theobromine and cocoa extract on lipid profile in rats.
        Nutr Res. 2000; 20: 1513-1517
        • Zevin S.
        • Benowitz N.L.
        Drug interactions with tobacco smoking.
        Clin Pharmacokinet. 1999; 36: 425-438
        • Funck-Brentano C.
        • Raphaël M.
        • Lafontaine M.
        • et al.
        Effects of type of smoking (pipe, cigars or cigarettes) on biological indices of tobacco exposure and toxicity.
        Lung Cancer. 2006; 54: 11-18
        • Ahmed H.M.
        • Blaha M.J.
        • Nasir K.
        • Rivera J.J.
        • Blumenthal R.S.
        Effects of physical activity on cardiovascular disease.
        Am J Cardiol. 2012; 109: 288-295
        • Kokkinos P.F.
        • Fernhall B.
        Physical activity and high density lipoprotein cholesterol levels.
        Sports Med. 1999; 28: 307-314
        • Guessous I.
        • Dobrinas M.
        • Kutalik Z.
        • et al.
        Caffeine intake and CYP1A2 variants associated with high caffeine intake protect non-smokers from hypertension.
        Hum Mol Genet. 2012; 21: 3283-3292
        • Palatini P.
        • Ceolotto G.
        • Ragazzo F.
        • et al.
        CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension.
        J Hypertens. 2009; 27: 1594-1601
        • Fried R.E.
        • Levine D.M.
        • Kwiterovich P.O.
        • et al.
        The effect of filtered-coffee consumption on plasma lipid levels: results of a randomized clinical trial.
        JAMA. 1992; 267: 811-815
      2. Lipid Research Clinics Program.
        JAMA. 1984; 252: 2545
        • Wilkins J.T.
        • Ning H.
        • Stone N.J.
        • et al.
        Coronary heart disease risks associated with high levels of HDL cholesterol.
        J Am Heart Assoc. 2014; 3: e000519
        • Bartlett J.
        • Predazzi I.M.
        • Williams S.M.
        • et al.
        Is isolated low high-density lipoprotein cholesterol a cardiovascular disease risk factor? New insights from the Framingham Offspring Study.
        Circ Cardiovasc Qual Outcomes. 2016; 9: 206-212
        • van Rooij J.
        • van der Stegen G.
        • Schoemaker R.C.
        • et al.
        A placebo-controlled parallel study of the effect of two types of coffee oil on serum lipids and transaminases: identification of chemical substances involved in the cholesterol-raising effect of coffee.
        Am J Clin Nutr. 1995; 61: 1277-1283
        • van Dam R.M.
        • Hu F.B.
        • Willett W.C.
        Coffee, caffeine, and health.
        N Engl J Med. 2020; 383: 369-378
        • Steffen M.
        • Kuhle C.
        • Hensrud D.
        • Erwin P.J.
        • Murad M.H.
        The effect of coffee consumption on blood pressure and the development of hypertension: a systematic review and meta-analysis.
        J Hypertens. 2012; 30: 2245-2254
        • El-Sohemy A.
        • Cornelis M.C.
        • Kabagambe E.K.
        • Campos H.
        Coffee, CYP1A2 genotype and risk of myocardial infarction.
        Genes Nutr. 2007; 2: 155-156