Advertisement
Mayo Clinic Proceedings Home

Targeting TMPRSS2 in SARS-CoV-2 Infection

      Abstract

      Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has rapidly caused a global pandemic associated with a novel respiratory infection: coronavirus disease-19 (COVID-19). Angiotensin-converting enzyme-2 (ACE2) is necessary to facilitate SARS-CoV-2 infection, but—owing to its essential metabolic roles—it may be difficult to target it in therapies. Transmembrane protease serine 2 (TMPRSS2), which interacts with ACE2, may be a better candidate for targeted therapies. Using publicly available expression data, we show that both ACE2 and TMPRSS2 are expressed in many host tissues, including lung. The highest expression of ACE2 is found in the testes, whereas the prostate displays the highest expression of TMPRSS2. Given the increased severity of disease among older men with SARS-CoV-2 infection, we address the potential roles of ACE2 and TMPRSS2 in their contribution to the sex differences in severity of disease. We show that expression levels of ACE2 and TMPRSS2 are overall comparable between men and women in multiple tissues, suggesting that differences in the expression levels of TMPRSS2 and ACE2 in the lung and other non–sex-specific tissues may not explain the gender disparities in severity of SARS CoV-2. However, given their instrumental roles for SARS-CoV-2 infection and their pleiotropic expression, targeting the activity and expression levels of TMPRSS2 is a rational approach to treat COVID-19.

      Abbreviations and Acronyms:

      ACE2 (angiotensin-converting enzyme 2), COVID-19 (coronavirus disease-19), GTEx (genotype-tissue expression), SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2), TMPRSS2 (transmembrane protease serine 2)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Huang C.
        • Wang Y.
        • Li X.
        • et al.
        Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
        Lancet. 2020; 395: 497-506
        • Wang C.
        • Horby P.W.
        • Hayden F.G.
        • Gao G.F.
        A novel coronavirus outbreak of global health concern.
        Lancet. 2020; 395: 470-473
        • Zhu N.
        • Zhang D.
        • Wang W.
        • et al.
        A novel coronavirus from patients with pneumonia in China, 2019.
        N Engl J Med. 2020; 382: 727-733
        • Dong E.
        • Du H.
        • Gardner L.
        An interactive web-based dashboard to track COVID-19 in real time.
        Lancet Infect Dis. 2020; 20: 533-534
        • Zhou P.
        • Yang X.L.
        • Wang X.G.
        • et al.
        A pneumonia outbreak associated with a new coronavirus of probable bat origin.
        Nature. 2020; 579: 270-273
        • Hoffmann M.
        • Kleine-Weber H.
        • Schroeder S.
        • et al.
        SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.
        Cell. 2020; 181: 271-280
        • Matsuyama S.
        • Nao N.
        • Shirato K.
        • et al.
        Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells.
        Proc Natl Acad Sci USA. 2020; 117: 7001-7003
        • Zhou F.
        • Yu T.
        • Du R.
        • et al.
        Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.
        Lancet. 2020; 395: 1054-1062
        • Zhang J.J.
        • Dong X.
        • Cao Y.Y.
        • et al.
        Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China.
        Allergy. 2020; https://doi.org/10.1111/all.14238
        • Chen N.
        • Zhou M.
        • Dong X.
        • et al.
        Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.
        Lancet. 2020; 395: 507-513
        • Wang D.
        • Hu B.
        • Hu C.
        • et al.
        Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.
        JAMA. 2020; 323: 1061-1069
        • Lai C.C.
        • Shih T.P.
        • Ko W.C.
        • Tang H.J.
        • Hsueh P.R.
        Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges.
        Int J Antimicrob Agents. 2020; 55: 105924
        • Yang X.
        • Yu Y.
        • Xu J.
        • et al.
        Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.
        Lancet Respir Med. 2020; 8: 475-481
        • Guan W.J.
        • Ni Z.Y.
        • Hu Y.
        • et al.
        Clinical characteristics of coronavirus disease 2019 in China.
        N Engl J Med. 2020; 382: 1708-1720
        • Du Y.
        • Tu L.
        • Zhu P.
        • et al.
        Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study.
        Am J Respir Crit Care Med. 2020; 201: 1372-1379
        • Xie J.
        • Tong Z.
        • Guan X.
        • Du B.
        • Qiu H.
        Clinical characteristics of patients who died of coronavirus disease 2019 in China.
        JAMA Netw Open. 2020; 3: e208147
        • Grasselli G.
        • Zangrillo A.
        • Zanella A.
        • et al.
        Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy.
        JAMA. 2020; 323: 1574-1581
        • Petrilli C.M.
        • Jones S.A.
        • Yang J.
        • et al.
        Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City.
        BMJ. 2020; 369: m1966
        • Jin J.-M.
        • Bai P.
        • He W.
        • et al.
        Gender differences in patients with COVID-19: focus on severity and mortality.
        Front Public Health. 2020; 8: 152
        • Alghamdi I.G.
        • Hussain II,
        • Almalki S.S.
        • Alghamdi M.S.
        • Alghamdi M.M.
        • El-Sheemy M.A.
        The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health.
        Int J Gen Med. 2014; 7: 417-423
        • Channappanavar R.
        • Fett C.
        • Mack M.
        • Ten Eyck P.P.
        • Meyerholz D.K.
        • Perlman S.
        Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection.
        J Immunol. 2017; 198: 4046-4053
        • Badawi A.
        • Ryoo S.G.
        Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis.
        Int J Infect Dis. 2016; 49: 129-133
        • Shi Y.
        • Yu X.
        • Zhao H.
        • Wang H.
        • Zhao R.
        • Sheng J.
        Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan.
        Crit Care. 2020; 24: 108
        • Butler D.J.
        • Mozsary C.
        • Meydan C.
        • et al.
        Host, viral, and environmental transcriptome profiles of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
        bioRxiv. 2020; https://doi.org/10.1101/2020.04.20.048066
        • Tukiainen T.
        • Villani A.C.
        • Yen A.
        • et al.
        Landscape of X chromosome inactivation across human tissues.
        Nature. 2017; 550: 244-248
        • Lin B.
        • Ferguson C.
        • White J.T.
        • et al.
        Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2.
        Cancer Res. 1999; 59: 4180-4184
        • Shen L.W.
        • Mao H.J.
        • Wu Y.L.
        • Tanaka Y.
        • Zhang W.
        TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections.
        Biochimie. 2017; 142: 1-10
        • Marcus J.H.
        • Novembre J.
        Visualizing the geography of genetic variants.
        Bioinformatics. 2017; 33: 594-595
        • Xydakis M.S.
        • Dehgani-Mobaraki P.
        • Holbrook E.H.
        • et al.
        Smell and taste dysfunction in patients with COVID-19.
        Lancet Infect Dis. 2020; https://doi.org/10.1016/S1473-3099(20)30293-0
        • Shastri A.
        • Wheat J.
        • Agrawal S.
        • et al.
        Delayed clearance of SARS-CoV2 in male compared to female patients: high ACE2 expression in testes suggests possible existence of gender-specific viral reservoirs.
        medRxiv. 2020; https://doi.org/10.1101/2020.04. 16.20060566
        • Marzano A.V.
        • Genovese G.
        • Fabbrocini G.
        • et al.
        Varicella-like exanthem as a specific COVID-19-associated skin manifestation: multicenter case series of 22 patients.
        J Am Acad Dermatol. 2020; 83: 280-285
        • Su H.
        • Yang M.
        • Wan C.
        • et al.
        Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China.
        Kidney Int. 2020; 98: 219-227
      1. Global Health5050.
        http://globalhealth5050.org/covid19
        Date accessed: May 2, 2020
        • Tay M.Z.
        • Poh C.M.
        • Renia L.
        • MacAry P.A.
        • Ng L.F.P.
        The trinity of COVID-19: immunity, inflammation and intervention.
        Nat Rev Immunol. 2020; 20: 363-374
        • Stopsack K.H.
        • Mucci L.A.
        • Antonarakis E.S.
        • Nelson P.S.
        • Kantoff P.W.
        TMPRSS2 and COVID-19: serendipity or opportunity for intervention?.
        Cancer Discov. 2020; 10: 779-782
        • Vaduganathan M.
        • Vardeny O.
        • Michel T.
        • McMurray J.J.V.
        • Pfeffer M.A.
        • Solomon S.D.
        Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19.
        N Engl J Med. 2020; 382: 1653-1659
        • Monteil V.
        • Kwon H.
        • Prado P.
        • et al.
        Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2.
        Cell. 2020; 181: 905-913
        • Crackower M.A.
        • Sarao R.
        • Oudit G.Y.
        • et al.
        Angiotensin-converting enzyme 2 is an essential regulator of heart function.
        Nature. 2002; 417: 822-828
        • Kim T.S.
        • Heinlein C.
        • Hackman R.C.
        • Nelson P.S.
        Phenotypic analysis of mice lacking the Tmprss2-encoded protease.
        Mol Cell Biol. 2006; 26: 965-975
        • Iwata-Yoshikawa N.
        • Okamura T.
        • Shimizu Y.
        • Hasegawa H.
        • Takeda M.
        • Nagata N.
        TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection.
        J Virol. 2019; 93: e01815-e01818
        • Gibo J.
        • Ito T.
        • Kawabe K.
        • et al.
        Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity.
        Lab Invest. 2005; 85: 75-89
        • Yamamoto M.
        • Matsuyama S.
        • Li X.
        • et al.
        Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus s protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay.
        Antimicrob Agents Chemother. 2016; 60: 6532-6539
        • Linn D.E.
        • Penney K.L.
        • Bronson R.T.
        • Mucci L.A.
        • Li Z.
        Deletion of interstitial genes between TMPRSS2 and ERG promotes prostate cancer progression.
        Cancer Res. 2016; 76: 1869-1881
        • Lucas J.M.
        • Heinlein C.
        • Kim T.
        • et al.
        The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis.
        Cancer Discov. 2014; 4: 1310-1325
        • Asselta R.
        • Paraboschi E.M.
        • Mantovani A.
        • Duga S.
        ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy.
        medRxiv. 2020;
        • Cai G.
        Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov.
        medRxiv, 2020https://doi.org/10.1101/2020.02.05.20020107
        • Kryuchkova-Mostacci N.
        • Robinson-Rechavi M.
        Tissue-specific evolution of protein coding genes in human and mouse.
        PLoS One. 2015; 10: e0131673