Famotidine Against SARS-CoV2: A Hope or Hype?

To the Editor: Coronavirus disease 2019 (COVID-19) is globe-trotting, and thousands of researchers and stakeholders are spending reposeless days and sleepless nights in search of effective therapies. Currently, the entire research sphere is dealing with a pandemic triad: hypes, hypotheses, and hopes. In the absence of a specific antiviral agent or vaccine against novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), “repurposing” of old time-tested medications is being tried. Famotidine is the most recent addition to this trend, creating a lot of hustle among the public and stirring criticism in the scientific arena. A phase 3 trial “Multi-site Adaptive Trials Using Hydroxychloroquine for COVID-19” (MATCH; ClinicalTrials.gov identifier: NCT04370262) has already been launched inconspicuously. This randomized double-blind clinical trial (N=1170) has been designed to compare clinical outcomes between 2 arms: one receiving hydroxychloroquine 200 mg plus famotidine (360 mg/d intravenously) and the other receiving hydroxychloroquine plus placebo. Famotidine will be administered for a maximum of 14 days or up to hospital discharge, whichever will come earlier. In this briefing, we will try to enlighten some facts regarding whether it is truly possible for famotidine to have a beneficial effect in COVID-19 or is it just hitting the castle in a Don Quixote way.

Antithetical to the initial belief, SARS-CoV-2 is a multisystemic illness with an array of manifestations protean in disease progression, severity, and outcome. The key pathogenesis revolves around the “cytokine storm” occurring because of the disruption of a delicate balance between proinflammatory and anti-inflammatory mediators and a depressed immune system. The climacteric role for the resolution of viral infection will be imparted upon the complex interplay between innate and adaptive immune systems in the host. Although an irrefutable pathogenesis and an efficacious vaccine is still a dream, attenuation of perpetual hyperinflammation is the bull’s-eye at this moment.

It is not the maiden time that the scientists have decided to “repurpose” the drug famotidine, an age-old antacid, to combat a viral disease. The effects of histamine on different substrates of immune system and immunomodulatory effects of H2 receptor antagonists (H2RAs) are well recognized. Through binding with histamine receptor 2 and modulating the effector pathways mediated by protein kinase A, famotidine potentially regulates innate and adaptive immune responses (Figures 1 and 2). It modulates antibody generation by B cells, cytokine release by T helper cell 1 (Th1), T-cell differentiation and proliferation, mast cell degranulation, and dendritic cell response. Innate immune system function is potentially boosted by stimulatory effects of H2RAs on its effectors, that is, macrophages, neutrophils, monocytes, dendritic cells, natural killer cells, and natural killer—T cells, and the adaptive system is filled by activation of helper T cells (Th1, Th2, and Th17), regulatory T cells, and cytotoxic CD8+ T cells.

FIGURE 1. Effects of H2 receptor antagonist (H2RA) on the innate immune system.

- **Neutrophils**
 1. Increased count
 2. Enhanced phagocytosis
 3. More bactericidal
 4. Decreased adhesion and peroxide production

- **Dendritic cells**
 1. Enhanced MHC-2, CD40, and CD80, CD86 expression
 2. Increased IL-12 production

- **Macrophages /monocytes**
 1. Enhanced emission of IL-2, IL-13, and TNF-α
 2. Increased expression of MHC-2 and caspase-1 activity

- **Natural killer cells**
 Increased natural killer cell count and cytotoxicity
It has been documented that famotidine completely demolishes histamine receptor 2-mediated negative effects on cytokine production, especially tumor necrosis factor-α (TNF-α) and interferon-γ; lipopolysaccharide-induced TNF-α production; and B7-1 expression on monocytes, and also curtails the inhibitory effects of histamine on the production of Th1-mediated cytokine release. H2RAs have been used in many other conditions, such as cancer, viral infection, bone remodeling, burn management, and vaccine potency enhancer, with mixed results. Previously, H2RA has been used with some success against HIV, human papilloma virus, herpes simplex virus, Epstein-Barr virus, and chronic hepatitis B infection. Ranitidine bismuth citrate has been found to inhibit the nucleoside triphosphate hydrolase and DNA unwinding activities of the SARS-CoV helicase and hinders its replication.

Although the above mechanistic explanations sound reasonable, the real outcomes in clinical trials might be completely futile as evidenced previously. The unpublished Chinese data that received publicity in the press claiming that the mortality rate for patients with COVID-19 taking famotidine was 14% compared with 27% for those not taking the drug reported not to be statistically significant. However, before concluding anything from this, one needs to analyze actual complete data along with the confounders. Moreover, scientists’ claims of famotidine having anti-protease-like effects have not stemmed from any strong published evidence, but rather from the evidence of the negative pharmacokinetic effects of famotidine on protease inhibitors. The dosage of famotidine being used in the MATCH trial is nearly 10 times greater than the usual dosage used for severe forms of peptic ulcer diseases. Although famotidine is a time-tested and safe drug, excessive inhibition of gastric acid secretion might precipitate pneumonia. Cardiac failure and arrhythmias have also been reported with high doses of intravenous famotidine administration.

Considering its relative cheapness, wide availability, and previous use as an antiviral agent, famotidine might usher some hope; however, we must wait for the trial results. Until then, hoarding and therapeutic misadventure with this drug must be condemned.

Ritwik Ghosh, MBBS, MD
Department of General Medicine
Burdwan Medical College and Hospital
Burdwan, West Bengal, India

Subhankar Chatterjee, MBBS, MD
Department of General Medicine
Rajendra Institute of Medical Sciences
Ranchi, Jharkhand, India

Souvik Dubey, MD, DM
Department of Neuromedicine
Bangur Institute of Neurosciences
Institute of Post Graduate Medical Education and Research and SSKM Hospital
Kolkata, West Bengal, India

Carl J. Lavie, MD
Department of Cardiovascular Diseases
John Ochsner Heart and Vascular Institute
Ochsner Clinical School
The University of Queensland School of Medicine
New Orleans, LA

Potential Competing Interests: The authors report no competing interests.

ORCID
Subhankar Chatterjee: https://orcid.org/0000-0002-3555-4412; Carl J. Lavie: https://orcid.org/0000-0003-3906-1911

LETTERS TO THE EDITOR

Guillain-Barré Syndrome in a Patient With Evidence of Recent SARS-CoV-2 Infection

To the Editor: A 58-year-old woman presented with rapidly progressive gait difficulty and dysgeusia after recovering from a febrile illness. Two weeks before presentation, she had returned from Florida but reported no contacts with persons who had confirmed or suspected coronavirus disease 2019 (COVID-19). She then developed an 11-day illness characterized by fever, myalgia, and asthenia but no respiratory symptoms (Figure).

Six days after recovery, she noted dysgeusia without anosmia, followed by rapidly progressive bilateral paraparesis, imbalance, and severe lower thoracic pain without radiation. One week later, she was admitted locally because of progression of symptoms and now required a gait aid for ambulation. Results of a computed tomography angiogram of the chest and abdomen were negative for dissection but revealed peripheral predominant sensory loss in the feet, dependent sensory loss in the hands, plantar responses were absent in the legs and decreased in the upper extremities. Plantar responses were absent. She had moderately severe length-dependent sensory loss in the feet, predominantly affecting large fiber modalities, and associated ataxic gait requiring 1-person assistance. Results of repeated nasopharyngeal SARS-CoV-2 RT-PCR were negative. Results of a qualitative SARS-CoV-2 IgG ELISA (Euroimmun) were again positive, with a signal to cutoff ratio (index…

https://doi.org/10.1016/j.mayocp.2020.05.027

https://doi.org/10.1016/j.mayocp.2020.05.027

Guillain-Barré Syndrome in a Patient With Evidence of Recent SARS-CoV-2 Infection

To the Editor: A 58-year-old woman presented with rapidly progressive gait difficulty and dysgeusia after recovering from a febrile illness. Two weeks before presentation, she had returned from Florida but reported no contacts with persons who had confirmed or suspected coronavirus disease 2019 (COVID-19). She then developed an 11-day illness characterized by fever, myalgia, and asthenia but no respiratory symptoms (Figure).

Six days after recovery, she noted dysgeusia without anosmia, followed by rapidly progressive bilateral paraparesis, imbalance, and severe lower thoracic pain without radiation. One week later, she was admitted locally because of progression of symptoms and now required a gait aid for ambulation. Results of a computed tomography angiogram of the chest and abdomen were negative for dissection but revealed peripheral predominant sensory loss in the feet, dependent sensory loss in the hands, plantar responses were absent in the legs and decreased in the upper extremities. Plantar responses were absent. She had moderately severe length-dependent sensory loss in the feet, predominantly affecting large fiber modalities, and associated ataxic gait requiring 1-person assistance. Results of repeated nasopharyngeal SARS-CoV-2 RT-PCR were negative. Results of a qualitative SARS-CoV-2 IgG ELISA (Euroimmun) were again positive, with a signal to cutoff ratio (index…

https://doi.org/10.1016/j.mayocp.2020.05.027

https://doi.org/10.1016/j.mayocp.2020.05.027

Guillain-Barré Syndrome in a Patient With Evidence of Recent SARS-CoV-2 Infection

To the Editor: A 58-year-old woman presented with rapidly progressive gait difficulty and dysgeusia after recovering from a febrile illness. Two weeks before presentation, she had returned from Florida but reported no contacts with persons who had confirmed or suspected coronavirus disease 2019 (COVID-19). She then developed an 11-day illness characterized by fever, myalgia, and asthenia but no respiratory symptoms (Figure).

Six days after recovery, she noted dysgeusia without anosmia, followed by rapidly progressive bilateral paraparesis, imbalance, and severe lower thoracic pain without radiation. One week later, she was admitted locally because of progression of symptoms and now required a gait aid for ambulation. Results of a computed tomography angiogram of the chest and abdomen were negative for dissection but revealed peripheral predominant sensory loss in the feet, dependent sensory loss in the hands, plantar responses were absent in the legs and decreased in the upper extremities. Plantar responses were absent. She had moderately severe length-dependent sensory loss in the feet, predominantly affecting large fiber modalities, and associated ataxic gait requiring 1-person assistance. Results of repeated nasopharyngeal SARS-CoV-2 RT-PCR were negative. Results of a qualitative SARS-CoV-2 IgG ELISA (Euroimmun) were again positive, with a signal to cutoff ratio (index…

https://doi.org/10.1016/j.mayocp.2020.05.027

https://doi.org/10.1016/j.mayocp.2020.05.027