Advertisement
Mayo Clinic Proceedings Home

Elastic Bandage vs Hypertonic Albumin for Diuretic-Resistant Volume-Overloaded Patients in Intensive Care Unit: A Propensity-Match Study

      Abstract

      Objective

      To compare elastic bandage (EB) vs hypertonic albumin solution administration to increase fluid removal by enhancing loop diuretic efficiency (DE) in patients with volume overload and diuretic resistance.

      Patients and Methods

      In this historic cohort study with propensity matching, we included diuretic-resistant adult (≥18 years) patients with volume overload after fluid resuscitation admitted in the intensive care unit from January 1, 2006, through June 30, 2017. Regression models and propensity matching were used to assess the associations of these interventions with changes in DE and other clinical outcomes.

      Results

      Of 1147 patients (median age, 66; interquartile range [IQR], 56-76 years; 51% [n=590] men), 384 (33%) received EB and 763 (67%) received hypertonic albumin solution. In adjusted models, EB was significantly associated with higher DE compared with hypertonic albumin solution (odds ratio, 1.37; 95% CI, 1.04 to 1.81; P=.004). After propensity matching of 345 pairs, DE remained significantly different between the 2 groups (median, 2111; IQR, 1092 to 4665 mL for EB vs median, 1829; IQR, 1032 to 3436 mL for hypertonic albumin solution; P=.02). EB, male sex, lower baseline serum urea nitrogen level, lower Charlson Comorbidity Index score, and higher baseline left ventricular ejection fraction were DE determinants. The lowest DE quartile (<1073 mL/40-mg furosemide equivalent) following adjustment for known predictors of mortality remained independently associated with higher 90-day death rate (odds ratio, 1.64; 95% CI, 1.13 to 2.36; P=.009).

      Conclusion

      EB use is associated with greater DE than hypertonic albumin solution during the deescalation phase of sepsis resuscitation. Prospective clinical trials would validate the findings of this hypothesis-generating study.

      Abbreviations and Acronyms:

      ADHF (acute decompensated heart failure), APACHE (Acute Physiology and Chronic Health Evaluation), ASD (absolute standard difference), CCI (Charlson Comorbidity Index), DE (diuretic efficiency), EB (elastic bandage), eGFR (estimated glomerular filtration rate), HA (hypertonic albumin), ICU (intensive care unit), IQR (interquartile range), LOS (length of stay), LVEF (left ventricular ejection fraction), OR (odds ratio), RRT (renal replacement therapy), SOFA (Sequential Organ Failure Assessment), SUN (serum urea nitrogen)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kelm D.J.
        • Perrin J.T.
        • Cartin-Ceba R.
        • Gajic O.
        • Schenck L.
        • Kennedy C.C.
        Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death.
        Shock. 2015; 43: 68-73
        • Chen H.
        • Wu B.
        • Gong D.
        • Liu Z.
        Fluid overload at start of continuous renal replacement therapy is associated with poorer clinical condition and outcome: a prospective observational study on the combined use of bioimpedance vector analysis and serum N-terminal pro-B-type natriuretic peptide measurement.
        Crit Care. 2015; 19: 135
        • Malbrain M.L.
        • Marik P.E.
        • Witters I.
        • et al.
        Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice.
        Anaesthesiol Intensive Ther. 2014; 46: 361-380
        • Brown C.B.
        • Ogg C.S.
        • Cameron J.S.
        High dose frusemide in acute renal failure: a controlled trial.
        Clin Nephrol. 1981; 15: 90-96
        • Wiedemann H.P.
        • Wheeler A.P.
        • Bernard G.R.
        • et al.
        • National Heart Lung and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network
        Comparison of two fluid-management strategies in acute lung injury.
        N Engl J Med. 2006; 354: 2564-2575
        • Palazzuoli A.
        • Ruocco G.
        • Ronco C.
        • McCullough P.A.
        Loop diuretics in acute heart failure: beyond the decongestive relief for the kidney.
        Crit Care. 2015; 19: 296
        • Testani J.M.
        • Chen J.
        • McCauley B.D.
        • Kimmel S.E.
        • Shannon R.P.
        Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival.
        Circulation. 2010; 122: 265-272
        • Mathews S.
        • James S.
        • Anderson J.D.
        • et al.
        Effect of elastic bandage wraps on leg edema in patients before and after liver transplant.
        Prog Transplant. 2015; 25 (331): 302-306
        • Kitsios G.D.
        • Mascari P.
        • Ettunsi R.
        • Gray A.W.
        Co-administration of furosemide with albumin for overcoming diuretic resistance in patients with hypoalbuminemia: a meta-analysis.
        J Crit Care. 2014; 29: 253-259
        • Ponto L.L.
        • Schoenwald R.D.
        Furosemide (frusemide). A pharmacokinetic/pharmacodynamic review (Part II).
        Clin Pharmacokinet. 1990; 18: 460-471
        • Martin G.S.
        • Moss M.
        • Wheeler A.P.
        • Mealer M.
        • Morris J.A.
        • Bernard G.R.
        A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury.
        Crit Care Med. 2005; 33: 1681-1687
        • Na K.Y.
        • Han J.S.
        • Kim Y.S.
        • et al.
        Does albumin preinfusion potentiate diuretic action of furosemide in patients with nephrotic syndrome?.
        J Korean Med Sci. 2001; 16: 448-454
        • Ghafari A.
        • Mehdizadeh A.
        • Alavi-Darazam I.
        • Rahimi E.
        • Kargar C.
        • Sepehrvand N.
        Co-administration of albumin-furosemide in patients with the nephrotic syndrome.
        Saudi J Kidney Dis Transpl. 2011; 22: 471-475
        • Phakdeekitcharoen B.
        • Boonyawat K.
        The added-up albumin enhances the diuretic effect of furosemide in patients with hypoalbuminemic chronic kidney disease: a randomized controlled study.
        BMC Nephrol. 2012; 13: 92
        • Dabiri G.
        • Hammerman S.
        • Carson P.
        • Falanga V.
        Low-grade elastic compression regimen for venous leg ulcers--an effective compromise for patients requiring daily dressing changes.
        Int Wound J. 2015; 12: 655-661
        • Partsch H.
        • Rabe E.
        • Stemmer R.
        Compression Therapy of the Extremities.
        Phlebologiques Françaises, Paris, France2000
        • Christopoulos D.C.
        • Nicolaides A.N.
        • Belcaro G.
        • Kalodiki E.
        Venous hypertensive microangiopathy in relation to clinical severity and effect of elastic compression.
        J Dermatol Surg Oncol. 1991; 17: 809-813
        • Mostbeck A.
        • Partsch H.
        • Peschl L.
        [Alteration of blood volume distribution throughout the body resulting from physical and pharmacological interventions] [in German].
        Vasa. 1977; 6: 137-142
        • Miranda Jr., F.
        • Perez M.C.
        • Castiglioni M.L.
        • et al.
        Effect of sequential intermittent pneumatic compression on both leg lymphedema volume and on lymph transport as semi-quantitatively evaluated by lymphoscintigraphy.
        Lymphology. 2001; 34: 135-141
        • O'Sullivan S.B.
        • Schmitz T.J.
        Physical Rehabilitation.
        5th ed. F.A. Davis, Philadelphia, PA2007
        • Brodovicz K.G.
        • McNaughton K.
        • Uemura N.
        • Meininger G.
        • Girman C.J.
        • Yale S.H.
        Reliability and feasibility of methods to quantitatively assess peripheral edema.
        Clin Med Res. 2009; 7: 21-31
        • Malbrain M.
        • Van Regenmortel N.
        • Saugel B.
        • et al.
        Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy.
        Ann Intensive Care. 2018; 8: 66
        • Ferreira J.P.
        • Girerd N.
        • Bettencourt Medeiros P.
        • et al.
        Lack of diuretic efficiency (but not low diuresis) early in an acutely decompensated heart failure episode is associated with increased 180-day mortality.
        Cardiorenal Med. 2017; 7: 137-149
        • Testani J.M.
        • Cappola T.P.
        • Brensinger C.M.
        • Shannon R.P.
        • Kimmel S.E.
        Interaction between loop diuretic-associated mortality and blood urea nitrogen concentration in chronic heart failure.
        J Am Coll Cardiol. 2011; 58: 375-382
        • Brater D.C.
        • Day B.
        • Burdette A.
        • Anderson S.
        Bumetanide and furosemide in heart failure.
        Kidney Int. 1984; 26: 183-189
        • Vargo D.L.
        • Kramer W.G.
        • Black P.K.
        • Smith W.B.
        • Serpas T.
        • Brater D.C.
        Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure.
        Clin Pharmacol Ther. 1995; 57: 601-609
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612
        • Rosenbaum P.R.
        • Rubin D.B.
        The central role of the propensity score in observational studies for causal effects.
        Biometrika. 1983; 70: 41-55
        • Matsushita K.
        • Selvin E.
        • Bash L.D.
        • Astor B.C.
        • Coresh J.
        Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) Study.
        Am J Kidney Dis. 2010; 55: 648-659
        • Sekhon J.S.
        Multivariate and propensity score matching software with automated balance optimization: the matching package for R.
        J Stat Softw. 2011; 42: 1-52
        • Austin P.C.
        Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies.
        Pharm Stat. 2011; 10: 150-161
        • Normand S.T.
        • Landrum M.B.
        • Guadagnoli E.
        • et al.
        Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores.
        J Clin Epidemiol. 2001; 54: 387-398
        • Austin P.C.
        Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples.
        Stat Med. 2009; 28: 3083-3107
        • Vaara S.T.
        • Korhonen A.M.
        • Kaukonen K.M.
        • et al.
        • FINNAKI Study Group
        Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study.
        Crit Care. 2012; 16: R197
        • Boyd J.H.
        • Forbes J.
        • Nakada T.A.
        • Walley K.R.
        • Russell J.A.
        Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality.
        Crit Care Med. 2011; 39: 259-265
        • Semler M.W.
        • Rice T.W.
        Sepsis resuscitation: fluid choice and dose.
        Clin Chest Med. 2016; 37: 241-250
        • Vincent J.L.
        • De Backer D.
        Circulatory shock.
        N Engl J Med. 2013; 369: 1726-1734
        • Grodin J.L.
        • Stevens S.R.
        • de Las Fuentes L.
        • et al.
        Intensification of medication therapy for cardiorenal syndrome in acute decompensated heart failure.
        J Card Fail. 2016; 22: 26-32
        • Asare K.
        Management of loop diuretic resistance in the intensive care unit.
        Am J Health Syst Pharm. 2009; 66: 1635-1640
        • Suki W.N.
        Diuretic resistance.
        Miner Electrolyte Metab. 1999; 25: 28-31
        • Testani J.M.
        • Brisco M.A.
        • Turner J.M.
        • et al.
        Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure.
        Circ Heart Fail. 2014; 7: 261-270
        • Aronson D.
        • Burger A.J.
        Diuretic response: clinical and hemodynamic predictors and relation to clinical outcome.
        J Card Fail. 2016; 22: 193-200
        • Krishnamoorthy A.
        • Greiner M.A.
        • Sharma P.P.
        • et al.
        Transient and persistent worsening renal function during hospitalization for acute heart failure.
        Am Heart J. 2014; 168: 891-900
        • Sachdeva A.
        • Dalton M.
        • Amaragiri S.V.
        • Lees T.
        Graduated compression stockings for prevention of deep vein thrombosis.
        Cochrane Database Syst Rev. 2014; 12: CD001484
        • Stansal A.
        • Lazareth I.
        • Michon Pasturel U.
        • et al.
        Compression therapy in 100 consecutive patients with venous leg ulcers.
        J Mal Vasc. 2013; 38: 252-258
        • Brenner B.M.
        • Rector F.C.
        Brenner & Rector's the Kidney.
        Saunders Elsevier, Philadelphia, PA2008
        • Valente M.A.
        • Voors A.A.
        • Damman K.
        • et al.
        Diuretic response in acute heart failure: clinical characteristics and prognostic significance.
        Eur Heart J. 2014; 35: 1284-1293
        • Beier K.
        • Eppanapally S.
        • Bazick H.S.
        • et al.
        Elevation of blood urea nitrogen is predictive of long-term mortality in critically ill patients independent of “normal” creatinine.
        Crit Care Med. 2011; 39: 305-313
        • Arihan O.
        • Wernly B.
        • Lichtenauer M.
        • et al.
        Blood urea nitrogen (BUN) is independently associated with mortality in critically ill patients admitted to ICU.
        PLoS One. 2018; 13: e0191697
        • St Sauver J.L.
        • Grossardt B.R.
        • Leibson C.L.
        • Yawn B.P.
        • Melton 3rd, L.J.
        • Rocca W.A.
        Generalizability of epidemiological findings and public health decisions: an illustration from the Rochester Epidemiology Project.
        Mayo Clin Proc. 2012; 87: 151-160