Mayo Clinic Proceedings Home

Artificial Intelligence in Cardiology: Present and Future

      Abstract

      Artificial intelligence (AI) is a nontechnical, popular term that refers to machine learning of various types but most often to deep neural networks. Cardiology is at the forefront of AI in medicine. For this review, we searched PubMed and MEDLINE databases with no date restriction using search terms related to AI and cardiology. Articles were selected for inclusion on the basis of relevance. We highlight the major achievements in recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take center stage in the field. Artificial intelligence requires a close collaboration among computer scientists, clinical investigators, clinicians, and other users in order to identify the most relevant problems to be solved. Best practices in the generation and implementation of AI include the selection of ideal data sources, taking into account common challenges during the interpretation, validation, and generalizability of findings, and addressing safety and ethical concerns before final implementation. The future of AI in cardiology and in medicine in general is bright as the collaboration between investigators and clinicians continues to excel.

      Abbreviations and Acronyms:

      ACS ( acute coronary syndrome), AI ( artificial intelligence), AUC ( area under the curve), CAD ( coronary artery disease), CDS ( clinical decision support), CRT ( cardiac resynchronization therapy), DL ( deep learning), ECG ( electrocardiogram), EF ( ejection fraction), EHR ( electronic health record), HF ( heart failure), HFpEF ( HF with preserved EF), HFrEF ( HF and reduced EF), MACE ( major cardiac event), ML ( machine learning), MPI ( myocardial perfusion imaging), NLP ( natural language processing), NSTEMI ( non–ST-segment elevation myocardial infarction), SPECT ( single-photon emission computed tomography), STEMI ( ST-segment elevation myocardial infarction), TPD ( total perfusion deficit), UA ( unstable angina)
      To read this article in full you will need to make a payment

      References

        • Chang H.Y.
        • Jung C.K.
        • Woo J.I.
        • et al.
        Artificial intelligence in pathology.
        J Pathol Transl Med. 2019; 53: 1-12
        • Rodriguez-Ruiz A.
        • Lång K.
        • Gubern-Merida A.
        • et al.
        Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists.
        J Natl Cancer Inst. 2019; 111: 916-922
        • Rodríguez-Ruiz A.
        • Krupinski E.
        • Mordang J.J.
        • et al.
        Detection of breast cancer with mammography: effect of an artificial intelligence support system.
        Radiology. 2019; 290: 305-314
        • Rajalakshmi R.
        • Subashini R.
        • Anjana R.M.
        • Mohan V.
        Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.
        Eye (Lond). 2018; 32: 1138-1144
        • Carter R.E.
        • Attia Z.I.
        • Geske J.R.
        • et al.
        Classification of background parenchymal uptake on molecular breast imaging using a convolutional neural network.
        JCO Clin Cancer Inform. 2019; 3: 1-11
        • Attia Z.I.
        • Kapa S.
        • Lopez-Jimenez F.
        • et al.
        Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram.
        Nat Med. 2019; 25: 70-74
        • Attia Z.I.
        • Kapa S.
        • Yao X.
        • et al.
        Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction.
        J Cardiovasc Electrophysiol. 2019; 30: 668-674
        • Alsharqi M.
        • Woodward W.J.
        • Mumith J.A.
        • Markham D.C.
        • Upton R.
        • Leeson P.
        Artificial intelligence and echocardiography.
        Echo Res Pract. 2018; 5: R115-R125
        • Goldstein B.A.
        • Navar A.M.
        • Carter R.E.
        Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.
        Eur Heart J. 2017; 38: 1805-1814
        • Jensen P.B.
        • Jensen L.J.
        • Brunak S.
        Mining electronic health records: towards better research applications and clinical care.
        Nat Rev Genet. 2012; 13: 395-405
        • Pons E.
        • Braun L.M.
        • Hunink M.G.
        • Kors J.A.
        Natural language processing in radiology: a systematic review.
        Radiology. 2016; 279: 329-343
        • Yim W.W.
        • Yetisgen M.
        • Harris W.P.
        • Kwan S.W.
        Natural language processing in oncology: a review.
        JAMA Oncol. 2016; 2: 797-804
        • Jha A.K.
        The promise of electronic records: around the corner or down the road [editorial]?.
        JAMA. 2011; 306: 880-881
        • Demner-Fushman D.
        • Chapman W.W.
        • McDonald C.J.
        What can natural language processing do for clinical decision support?.
        J Biomed Inform. 2009; 42: 760-772
      1. Natural language processing. Wikipedia website.
        (Revised January 27. Accessed January 13, 2020)
        • Afzal N.
        • Mallipeddi V.P.
        • Sohn S.
        • et al.
        Natural language processing of clinical notes for identification of critical limb ischemia.
        Int J Med Inform. 2018; 111: 83-89
        • Afzal N.
        • Sohn S.
        • Abram S.
        • et al.
        Mining peripheral arterial disease cases from narrative clinical notes using natural language processing.
        J Vasc Surg. 2017; 65: 1753-1761
        • Kreimeyer K.
        • Foster M.
        • Pandey A.
        • et al.
        Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review.
        J Biomed Inform. 2017; 73: 14-29
        • Murff H.J.
        • FitzHenry F.
        • Matheny M.E.
        • et al.
        Automated identification of postoperative complications within an electronic medical record using natural language processing.
        JAMA. 2011; 306: 848-855
        • McCowan I.A.
        • Moore D.C.
        • Nguyen A.N.
        • et al.
        Collection of cancer stage data by classifying free-text medical reports.
        J Am Med Inform Assoc. 2007; 14: 736-745
        • Bozkurt S.
        • Gimenez F.
        • Burnside E.S.
        • Gulkesen K.H.
        • Rubin D.L.
        Using automatically extracted information from mammography reports for decision-support.
        J Biomed Inform. 2016; 62: 224-231
        • Cheng L.T.
        • Zheng J.
        • Savova G.K.
        • Erickson B.J.
        Discerning tumor status from unstructured MRI reports—completeness of information in existing reports and utility of automated natural language processing.
        J Digit Imaging. 2010; 23: 119-132
        • Kusunose K.
        • Abe T.
        • Haga A.
        • et al.
        A Deep Learning approach for assessment of regional wall motion abnormality from echocardiographic images.
        J Am Coll Cardiol Img. 2020; 13: 374-381
        • Behnami D.
        • Liao Z.
        • Girgis H.
        • et al.
        Dual-view joint estimation of left ventricular ejection fraction with uncertainty modelling in echocardiograms.
        in: Shen D. Liu T. Peters T.M. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing, Cham, Switzerland2019: 696-704 (Lecture Notes in Computer Science, vol 11765)
        • Samad M.D.
        • Ulloa A.
        • Wehner G.J.
        • et al.
        Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning.
        J Am Coll Cardiol Img. 2019; 12: 681-689
        • Kwon J.M.
        • Kim K.H.
        • Jeon K.H.
        • Park J.
        Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography.
        Echocardiography. 2019; 36: 213-218
        • Østvik A.
        • Smistad E.
        • Aase S.A.
        • Haugen B.O.
        • Lovstakken L.
        Real-time standard view classification in transthoracic echocardiography using convolutional neural networks.
        Ultrasound Med Biol. 2019; 45: 374-384
        • Zhang J.
        • Gajjala S.
        • Agrawal P.
        • et al.
        Fully automated echocardiogram interpretation in clinical practice.
        Circulation. 2018; 138: 1623-1635
        • Omar H.A.
        • Domingos J.S.
        • Patra A.
        • Upton R.
        • Leeson P.
        • Noble J.A.
        Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography. Paper presented at: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).
        April 4-7, 2018 (Washington, DC)
        • Madani A.
        • Arnaout R.
        • Mofrad M.
        • Arnaout R.
        Fast and accurate view classification of echocardiograms using deep learning.
        NPJ Digit Med. 2018; 1: 6
        • Ernande L.
        • Audureau E.
        • Jellis C.L.
        • et al.
        Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus.
        J Am Coll Cardiol. 2017; 70: 1704-1716
        • Narula S.
        • Shameer K.
        • Salem Omar A.M.
        • Dudley J.T.
        • Sengupta P.P.
        Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography.
        J Am Coll Cardiol. 2016; 68: 2287-2295
        • Sengupta P.P.
        • Huang Y.M.
        • Bansal M.
        • et al.
        Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy.
        Circ Cardiovasc Imaging. 2016; 9: e004330
        • Garcia E.V.
        • Klein J.L.
        • Taylor A.T.
        Clinical decision support systems in myocardial perfusion imaging.
        J Nucl Cardiol. 2014; 21: 427-439
        • Arsanjani R.
        • Xu Y.
        • Dey D.
        • et al.
        Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm.
        J Nucl Med. 2013; 54: 549-555
        • Arsanjani R.
        • Xu Y.
        • Dey D.
        • et al.
        Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population.
        J Nucl Cardiol. 2013; 20: 553-562
        • Betancur J.
        • Commandeur F.
        • Motlagh M.
        • et al.
        Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study.
        J Am Coll Cardiol Img. 2018; 11: 1654-1663
        • Arsanjani R.
        • Dey D.
        • Khachatryan T.
        • et al.
        Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.
        J Nucl Cardiol. 2015; 22: 877-884
        • Betancur J.
        • Otaki Y.
        • Motwani M.
        • et al.
        Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning.
        JACC Cardiovasc Imaging. 2018; 11: 1000-1009
        • Garcia E.V.
        • Klein J.L.
        • Moncayo V.
        • et al.
        Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system for myocardial perfusion SPECT imaging [published online ahead of print September 12, 2018).
        (J Nucl Cardiol)
        • Slomka P.J.
        • Dey D.
        • Sitek A.
        • Motwani M.
        • Berman D.S.
        • Germano G.
        Cardiac imaging: working towards fully-automated machine analysis & interpretation.
        Expert Rev Med Devices. 2017; 14: 197-212
        • Wasserlauf J.
        • You C.
        • Patel R.
        • Valys A.
        • Albert D.
        • Passman R.
        Smartwatch performance for the detection and quantification of atrial fibrillation.
        Circ Arrhythm Electrophysiol. 2019; 12: e006834
        • Singh N.
        • Chun S.
        • Hadley D.
        • Froelicher V.
        Clinical implications of technological advances in screening for atrial fibrillation.
        Prog Cardiovasc Dis. 2018; 60: 550-559
        • Hagiwara Y.
        • Fujita H.
        • Oh S.L.
        • et al.
        Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review.
        Information Sciences. 2018; 467: 99-114
        • Tison G.H.
        • Sanchez J.M.
        • Ballinger B.
        • et al.
        Passive detection of atrial fibrillation using a commercially available smartwatch.
        JAMA Cardiol. 2018; 3: 409-416
        • Viskin S.
        • Rosovski U.
        • Sands A.J.
        • et al.
        Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one.
        Heart Rhythm. 2005; 2: 569-574
        • Attia Z.I.
        • Sugrue A.
        • Asirvatham S.J.
        • et al.
        Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: a proof of concept study.
        PLoS One. 2018; 13: e0201059
        • Zollei L.
        • Grimson E.
        • Norbash A.
        • Wells W.
        2D-3D rigid registration of X-ray fluoroscopy and CT images using mutual information and sparsely sampled histogram estimators [abstract].
        in: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: CVPR 2001. IEEE Computer Society, Los Alamitos, CA2001: II-696
        • Attia Z.I.
        • DeSimone C.V.
        • Dillon J.J.
        • et al.
        Novel bloodless potassium determination using a signal-processed single-lead ECG.
        J Am Heart Assoc. 2016; 5: e002746
        • O'Gara P.T.
        • Kushner F.G.
        • Ascheim D.D.
        • et al.
        2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        J Am Coll Cardiol. 2013; 61: e78-e140
        • Barbagelata A.
        • Bethea C.F.
        • Severance H.W.
        • et al.
        Smartphone ECG for evaluation of ST-segment elevation myocardial infarction (STEMI): design of the ST LEUIS International Multicenter Study.
        J Electrocardiol. 2018; 51: 260-264
        • Chan J.
        • Rea T.
        • Gollakota S.
        • Sunshine J.E.
        Contactless cardiac arrest detection using smart devices.
        NPJ Digit Med. 2019; 2: 52
        • Xiao R.
        • Xu Y.
        • Pelter M.M.
        • Mortara D.W.
        • Hu X.
        A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings.
        AMIA Jt Summits Transl Sci Proc. 2018; 2018: 256-262
        • VanHouten J.P.
        • Starmer J.M.
        • Lorenzi N.M.
        • Maron D.J.
        • Lasko T.A.
        Machine learning for risk prediction of acute coronary syndrome.
        AMIA Annu Symp Proc. 2014; 2014: 1940-1949
        • Zack C.J.
        • Senecal C.
        • Kinar Y.
        • et al.
        Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention.
        J Am Coll Cardiol Intv. 2019; 12: 1304-1311
        • Myers P.D.
        • Scirica B.M.
        • Stultz C.M.
        Machine learning improves risk stratification after acute coronary syndrome.
        Sci Rep. 2017; 7: 12692
        • Davies J.
        CEREBRIA-1: machine learning vs expert human opinion to determine physiologically optimized coronary revascularization strategies. Paper presented at: Transcatheter Cardiovascular Therapeutics 2018.
        September 24, 2018 (San Diego, CA)
        • Cho H.
        • Lee J.G.
        • Kang S.J.
        • et al.
        Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions.
        J Am Heart Assoc. 2019; 8: e011685
        • Sandhu G.S.
        • Sanon S.
        • Holmes Jr., D.R.
        • et al.
        Magnetic navigation facilitates percutaneous coronary intervention for complex lesions.
        Catheter Cardiovasc Interv. 2014; 84: 660-667
        • Tefft B.J.
        • Uthamaraj S.
        • Harbuzariu A.
        • et al.
        Nanoparticle-mediated cell capture enables rapid endothelialization of a novel bare metal stent.
        Tissue Eng Part A. 2018; 24: 1157-1166
        • Yancy C.W.
        • Jessup M.
        • Bozkurt B.
        • et al.
        2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America.
        Circulation. 2017; 136: e137-e161
        • Greene S.J.
        • Butler J.
        • Albert N.M.
        • et al.
        Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry.
        J Am Coll Cardiol. 2018; 72: 351-366
        • AbouEzzeddine O.F.
        • McKie P.M.
        • Scott C.G.
        • et al.
        Biomarker-based risk prediction in the community.
        Eur J Heart Fail. 2016; 18: 1342-1350
        • Echouffo-Tcheugui J.B.
        • Greene S.J.
        • Papadimitriou L.
        • et al.
        Population risk prediction models for incident heart failure: a systematic review.
        Circ Heart Fail. 2015; 8: 438-447
        • Ng K.
        • Steinhubl S.R.
        • deFilippi C.
        • Dey S.
        • Stewart W.F.
        Early detection of heart failure using electronic health records: practical implications for time before diagnosis, data diversity, data quantity, and data density.
        Circ Cardiovasc Qual Outcomes. 2016; 9: 649-658
        • Deo R.C.
        Machine learning in medicine.
        Circulation. 2015; 132: 1920-1930
        • Deo R.C.
        • Nallamothu B.K.
        Learning about machine learning: the promise and pitfalls of big data and the electronic health record [editorial].
        Circ Cardiovasc Qual Outcomes. 2016; 9: 618-620
        • Groeneveld P.W.
        • Rumsfeld J.S.
        Can big data fulfill its promise?.
        Circ Cardiovasc Qual Outcomes. 2016; 9: 679-682
        • Futoma J.
        • Morris J.
        • Lucas J.
        A comparison of models for predicting early hospital readmissions.
        J Biomed Inform. 2015; 56: 229-238
        • Golas S.B.
        • Shibahara T.
        • Agboola S.
        • et al.
        A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.
        BMC Med Inform Decis Mak. 2018; 18: 44
        • Mortazavi B.J.
        • Downing N.S.
        • Bucholz E.M.
        • et al.
        Analysis of machine learning techniques for heart failure readmissions.
        Circ Cardiovasc Qual Outcomes. 2016; 9: 629-640
        • Gupta A.
        • Fonarow G.C.
        The Hospital Readmissions Reduction Program—learning from failure of a healthcare policy.
        Eur J Heart Fail. 2018; 20: 1169-1174
        • Dickinson M.G.
        • Allen L.A.
        • Albert N.A.
        • et al.
        Remote monitoring of patients with heart failure: a white paper from the Heart Failure Society of America Scientific Statements Committee.
        J Card Fail. 2018; 24: 682-694
        • Cikes M.
        • Sanchez-Martinez S.
        • Claggett B.
        • et al.
        Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy.
        Eur J Heart Fail. 2019; 21: 74-85
        • Kalscheur M.M.
        • Kipp R.T.
        • Tattersall M.C.
        • et al.
        Machine learning algorithm predicts cardiac resynchronization therapy outcomes: lessons from the COMPANION trial.
        Circ Arrhythm Electrophysiol. 2018; 11: e005499
        • Shah S.J.
        • Katz D.H.
        • Selvaraj S.
        • et al.
        Phenomapping for novel classification of heart failure with preserved ejection fraction.
        Circulation. 2015; 131: 269-279
        • Ahmad T.
        • Pencina M.J.
        • Schulte P.J.
        • et al.
        Clinical implications of chronic heart failure phenotypes defined by cluster analysis.
        J Am Coll Cardiol. 2014; 64: 1765-1774
        • Kannel W.B.
        Some lessons in cardiovascular epidemiology from Framingham.
        Am J Cardiol. 1976; 37: 269-282
        • Kakadiaris I.A.
        • Vrigkas M.
        • Yen A.A.
        • Kuznetsova T.
        • Budoff M.
        • Naghavi M.
        Machine learning outperforms ACC/AHA CVD Risk Calculator in MESA.
        J Am Heart Assoc. 2018; 7: e009476
        • Ambale-Venkatesh B.
        • Yang X.
        • Wu C.O.
        • et al.
        Cardiovascular event prediction by machine learning: the Multi-Ethnic Study of Atherosclerosis.
        Circ Res. 2017; 121: 1092-1101
        • Poplin R.
        • Varadarajan A.V.
        • Blumer K.
        • et al.
        Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning.
        Nat Biomed Eng. 2018; 2: 158-164
        • Maor E.
        • Sara J.D.
        • Orbelo D.M.
        • Lerman L.O.
        • Levanon Y.
        • Lerman A.
        Voice signal characteristics are independently associated with coronary artery disease.
        Mayo Clin Proc. 2018; 93: 840-847
        • Cimino J.J.
        Improving the electronic health record—are clinicians getting what they wished for?.
        JAMA. 2013; 309: 991-992
        • Blumenthal D.
        • Tavenner M.
        The "meaningful use" regulation for electronic health records.
        N Engl J Med. 2010; 363: 501-504
        • Kaggal V.C.
        • Elayavilli R.K.
        • Mehrabi S.
        • et al.
        Toward a learning health-care system –knowledge delivery at the point of care empowered by big data and NLP.
        Biomed Inform Insights. 2016; 8: 13-22
        • Wang Y.
        • Wang L.
        • Rastegar-Mojarad M.
        • et al.
        Clinical information extraction applications: a literature review.
        J Biomed Inform. 2018; 77: 34-49
        • Liu H.
        • Bielinski S.J.
        • Sohn S.
        • et al.
        An information extraction framework for cohort identification using electronic health records.
        AMIA Jt Summits Transl Sci Proc. 2013; 2013: 149-153
        • Arruda-Olson A.M.
        • Afzal N.
        • Priya Mallipeddi V.
        • et al.
        Leveraging the electronic health record to create an automated real-time prognostic tool for peripheral arterial disease.
        J Am Heart Assoc. 2018; 7: e009680
        • Li Z.
        • Keel S.
        • Liu C.
        • et al.
        An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs.
        Diabetes Care. 2018; 41: 2509-2516
        • McKinney S.M.
        • Sieniek M.
        • Godbole V.
        • et al.
        International evaluation of an AI system for breast cancer screening.
        Nature. 2020; 577: 89-94
        • Brinker T.J.
        • Hekler A.
        • Utikal J.S.
        • et al.
        Skin cancer classification using convolutional neural networks: systematic review.
        J Med Internet Res. 2018; 20: e11936
        • Tariq Q.
        • Daniels J.
        • Schwartz J.N.
        • Washington P.
        • Kalantarian H.
        • Wall D.P.
        Mobile detection of autism through machine learning on home video: a development and prospective validation study.
        PLoS Med. 2018; 15: e1002705
        • Johnson K.W.
        • Torres Soto J.
        • Glicksberg B.S.
        • et al.
        Artificial intelligence in cardiology.
        J Am Coll Cardiol. 2018; 71: 2668-2679
        • Gerber Y.
        • Weston S.A.
        • Enriquez-Sarano M.
        • et al.
        Contemporary risk stratification after myocardial infarction in the community: performance of scores and incremental value of soluble suppression of tumorigenicity-2.
        J Am Heart Assoc. 2017; 6: e005958
        • Lauer M.S.
        • Gordon D.
        • Wei G.
        • Pearson G.
        Efficient design of clinical trials and epidemiological research: is it possible?.
        Nat Rev Cardiol. 2017; 14: 493-501
        • Gulshan V.
        • Peng L.
        • Coram M.
        • et al.
        Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
        JAMA. 2016; 316: 2402-2410
        • Nakagawa M.
        • Nakaura T.
        • Namimoto T.
        • et al.
        Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
        Eur J Radiol. 2018; 108: 147-154
        • Hardesty L.
        Study finds gender and skin-type bias in commercial artificial-intelligence systems. MIT News website.
        • Budds D.
        Biased AI is a threat to civil liberties: the ACLU has a plan to fix it. Fast Company & Inc website.
        • Tashea J.
        Courts are using AI to sentence criminals: that must stop now. WIRED website.
        https://www.wired.com/2017/04/courts-using-ai-sentence-criminals-must-stop-now
        Date: Published April 17, 2017
        Date accessed: March 20, 2019
        • Abrams C.
        Google’s effort to prevent blindness shows AI challenges. Wall Street Journal website.
        (Published January 26, 2019. Accessed January 13, 2020.)
      2. The Netflix prize. Netflix website.
        https://www.netflixprize.com/
        Date accessed: January 21, 2019
        • Centers for Medicare and Medicaid Services
        CMS Health Outcomes Challenge. Centers for Medicare and Medicaid Services website.
        https://ai.cms.gov/
        Date accessed: January 21, 2019
        • Dyke S.O.M.
        • Saulnier K.M.
        • Pastinen T.
        • Bourque G.
        • Joly Y.
        Evolving data access policy: the Canadian context.
        Facets (Ott). 2016; 1: 138-147
        • Liverani M.
        • Teng S.
        • Le M.S.
        • Coker R.
        Sharing public health data and information across borders: lessons from Southeast Asia.
        Global Health. 2018; 14: 94
      3. Reporting standards and availability of data, materials, code and protocols. Nature Research website.
        • Barsh G.S.
        • Cooper G.M.
        • Copenhaver G.P.
        • et al.
        PLOS Genetics data sharing policy: in pursuit of functional utility.
        PLoS Genet. 2015; 11: e1005716
        • Carter R.E.
        • Attia Z.I.
        • Lopez-Jimenez F.
        • Friedman P.A.
        Pragmatic considerations for fostering reproducible research in artificial intelligence.
        NPJ Digit Med. 2019; 2: 42
        • Rocher L.
        • Hendrickx J.M.
        • de Montjoye Y.A.
        Estimating the success of re-identifications in incomplete datasets using generative models.
        Nat Commun. 2019; 10: 3069
        • Hall M.A.
        • Schulman K.A.
        Ownership of medical information.
        JAMA. 2009; 301: 1282-1284
      4. Who owns medical records: 50 state comparison. Health Information & the Law website.
        • Shead S.
        DeepMind is handing DeepMind Health over to Google. Forbes website.