Mayo Clinic Proceedings Home

Cerebral Cavernous Malformation: What a Practicing Clinician Should Know

      Abstract

      Cavernous malformations (CMs) are angiographically occult, low-flow vascular malformations of the central nervous system. They are acquired lesions, with approximately 80% of patients having the sporadic form and 20% the familial form of the disease. The lesions may also develop years after radiotherapy. At the microscopic level, they consist of endothelium-lined cavities (or “caverns”) containing blood of different ages. The endothelium proliferates abnormally, and tight junctions are absent or dysfunctional, resulting in leakiness of the endothelium and clinical manifestations in some patients. Cavernous malformations can be an incidental finding or can present with focal neurologic deficits, seizures, or headache, with or without associated hemorrhage. Management of the CM lesion requires knowledge of the natural history of the disease compared with the risk of surgical intervention. Surgery is often considered for symptomatic patients with lesions in a noneloquent location. Medical management is warranted for symptoms related to the CM. Research aimed at understanding the genes and signaling pathways related to CMs have provided potential drug targets, and clinical trials are underway to determine whether medications reduce the risk of future bleeding without surgery or modify the disease course. In addition, recent epidemiologic data have aided practitioners in determining how to treat comorbid conditions in patients with a potentially hemorrhagic lesion. This review provides an overview of the epidemiology, presentation, and clinical management of CMs.

      Abbreviations and Acronyms:

      CCM ( cerebral cavernous malformation), CM ( cavernous malformation), DVA ( developmental venous anomaly), MRI ( magnetic resonance imaging), NSAID ( nonsteroidal anti-inflammatory drug), QSM ( quantitative susceptibility mapping), SWI ( susceptibility-weighted imaging), TLR4 ( toll-like receptor 4)
      To read this article in full you will need to make a payment

      References

        • Gonzalez L.F.
        • Lekovic G.P.
        • Eschbacher J.
        • Coons S.
        • Porter R.W.
        • Spetzler R.F.
        Are cavernous sinus hemangiomas and cavernous malformations different entities?.
        Neurosurg Focus. 2006; 21: e6
        • Zabramski J.M.
        • Wascher T.M.
        • Spetzler R.F.
        • et al.
        The natural history of familial cavernous malformations: results of an ongoing study.
        J Neurosurg. 1994; 80: 422-432
        • Kazawa N.
        • Shibamoto Y.
        The MRI imaging of cerebral cavernous malformation with practical use of diffusion weighted image.
        Int J Radiol. 2015; 2: 24-28
        • Rigamonti D.
        • Drayer B.P.
        • Johnson P.C.
        • Hadley M.N.
        • Zabramski J.
        • Spetzler R.F.
        The MRI appearance of cavernous malformations (angiomas).
        J Neurosurg. 1987; 67: 518-524
        • Otten P.
        • Pizzolato G.P.
        • Rilliet B.
        • Berney J.
        131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies.
        Neurochirurgie. 1989; 35: 128-131
        • Courville C.B.
        Pathology of the Central Nervous System.
        3rd ed. Pacific Press Publishing Association, Mountain View, CA1950
        • Al-Holou W.N.
        • O'Lynnger T.M.
        • Pandey A.S.
        • et al.
        Natural history and imaging prevalence of cavernous malformations in children and young adults.
        J Neurosurg Pediatr. 2012; 9: 198-205
        • Sage M.
        • Brophy B.
        • Sweeney C.
        • et al.
        Cavernous haemangiomas (angiomas) of the brain: clinically significant lesions.
        Australas Radiol. 1993; 37: 147-155
        • DelCurling Jr., O.
        • Kelly Jr., D.L.
        • Elster A.D.
        • Craven T.E.
        An analysis of the natural history of cavernous angiomas.
        J Neurosurg. 1991; 75: 702-708
        • Flemming K.D.
        • Graff-Radford J.
        • Aakre J.
        • et al.
        Population-based prevalence of cerebral cavernous malformations in older adults: Mayo Clinic Study of Aging.
        JAMA Neurol. 2017; 74: 801-805
        • Al-Shahi Salman R.
        • Hall J.M.
        • Horne M.A.
        • et al.
        Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study.
        Lancet Neurol. 2012; 11: 217-224
        • Flemming K.D.
        Clinical management of cavernous malformations.
        Curr Cardiol Rep. 2017; 19: 122
        • Flemming K.D.
        • Link M.J.
        • Christianson T.J.
        • Brown Jr., R.D.
        The prospective hemorrhage risk of intracerebral cavernous malformations.
        Neurology. 2012; 78: 632-636
        • Morrison L.
        • Akers A.
        Cerebral cavernous malformation, familial. In: Pagon RA, Adam MP, Ardinger HH, et al, eds. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2017.
        https://www.ncbi.nlm.nih.gov/books/NBK1293
        Date accessed: July 30, 2019
        • Horne M.A.
        • Flemming K.D.
        • Su I.C.
        • et al.
        Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data.
        Lancet Neurol. 2016; 15: 166-173
        • Flemming K.D.
        • Bovis G.K.
        • Meyer F.B.
        Aggressive course of multiple de novo cavernous malformations.
        J Neurosurg. 2011; 115: 1175-1178
        • Cakirer S.
        De novo formation of a cavernous malformation of the brain in the presence of a developmental venous anomaly.
        Clin Radiol. 2003; 58: 251-256
        • Brinjikji W.
        • Flemming K.D.
        • Lanzino G.
        De novo formation of a large cavernoma associated with a congenital torcular dural arteriovenous fistula: case report.
        J Neurosurg Pediatr. 2017; 19: 567-570
        • Chakravarthy H.
        • Lin T.-K.
        • Chen Y.-L.
        • Wu Y.-M.
        • Yeh C.-H.
        • Wong H.-F.
        De novo formation of cerebral cavernous malformation adjacent to existing developmental venous anomaly: an effect of change in venous pressure associated with management of a complex dural arterio-venous fistula.
        Neuroradiol J. 2016; 29: 458-464
        • Campeau N.G.
        • Lane J.I.
        De novo development of a lesion with the appearance of a cavernous malformation adjacent to an existing developmental venous anomaly.
        AJNR Am J Neuroradiol. 2005; 26: 156-159
        • Nimjee S.M.
        • Powers C.J.
        • Bulsara K.R.
        Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy.
        Neurosurg Focus. 2006; 21: e4
        • Pozzati E.
        • Acciarri N.
        • Tognetti F.
        • Marliani F.
        • Giangaspero F.
        Growth, subsequent bleeding, and de novo appearance of cerebral cavernous angiomas.
        Neurosurgery. 1996; 38: 662-669
        • Su I.-C.
        • Krishnan P.
        • Rawal S.
        • Krings T.
        Magnetic resonance evolution of de novo formation of a cavernoma in a thrombosed developmental venous anomaly: a case report.
        Neurosurgery. 2013; 73: E739-E745
        • Tekkok I.
        • Ventureyra E.
        De novo familial cavernous malformation presenting with hemorrhage 12.5 years after the initial hemorrhagic ictus: natural hisotory of an infantile form.
        Pediatr Neurosurg. 1996; 25: 151-155
        • Brinjikji W.
        • El-Masri A.E.
        • Wald J.T.
        • Flemming K.D.
        • Lanzino G.
        Prevalence of cerebral cavernous malformations associated with developmental venous anomalies increases with age.
        Child Nerv Syst. 2017; 33: 1539-1543
        • Gross B.A.
        • Lin N.
        • Du R.
        • Day A.L.
        The natural history of intracranial cavernous malformations.
        Neurosurg Focus. 2011; 30: E24
        • Schneble H.
        • Soumare A.
        • Herve D.
        • et al.
        Antithrombotic therapy and bleeding risk in a prospective cohort of patients with cerebral cavernous malformation.
        Stroke. 2012; 43: 3196-3199
        • Dammann P.
        • Wrede K.H.
        • Maderwald S.
        • et al.
        The venous angioarchitecture of sporadic cerebral cavernous malformations: a susceptibility weighted imaging study at 7 T MRI.
        J Neurol Neurosurg Psychiatry. 2013; 84: 194-200
        • Dammann P.
        • Wrede K.
        • Zhu Y.
        • et al.
        Correlation of the venous angioarchitecture of multiple cerebral cavernous malformations with familial or sporadic disease: a susceptibility-weighted imaging study with 7-Tesla MRI.
        J Neurosurg. 2017; 126: 570-577
        • Riant F.
        • Bergametti F.
        • Ayrignac X.
        • Boulday G.
        • Tournier-Lasserve E.
        Recent insights into cerebral cavernous malformations: the molecular genetics of CCM.
        FEBS J. 2010; 277: 1070-1075
        • McDonald D.
        • Shi C.
        • Shenkar R.
        Lesions from patients with sporadic cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis.
        Hum Mol Genet. 2014; 23: 4357-4370
        • Akers A.
        • Johnson E.
        • Steinberg G.
        • Zabramski J.
        • Marchuk D.
        Biallelic somatic and germline mutations in cerebral cavernous malformations: evidence for a two-hit mechanism of CCM pathogenesis.
        Hum Mol Genet. 2009; 18: 919-930
        • Akers A.
        • Al-Shahi Salman R.
        • Awad I.
        • et al.
        Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel.
        Neurosurgery. 2017; 80: 665-680
        • Zafar A.
        • Quadri S.A.
        • Farooqui M.
        • et al.
        Familial cerebral cavernous malformations.
        Stroke. 2019; 50: 1294-1301
        • Eerola I.
        • Plate K.H.
        • Spiegel R.
        • Boon L.M.
        • Mulliken J.B.
        • Vikkula M.
        KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous malformation associated with cerebral capillary malformation.
        Hum Mol Genet. 2000; 9: 1351-1355
        • Choquet H.
        • Nelson J.
        • Pawlikowska L.
        • et al.
        Association of cardiovascular risk factors with disease severity in cerebral cavernous malformation type 1 subjects with the common Hispanic mutation.
        Cerebrovasc Dis. 2014; 37: 57-63
        • Choquet H.
        • Pawlikowska L.
        • Lawton M.T.
        • Kim H.
        Genetics of cerebral cavernous malformations: current status and future prospects.
        J Neurosurg Sci. 2015; 59: 211-220
        • Shenkar R.
        • Peiper A.
        • Pardo H.
        • et al.
        Rho kinase inhibition blunts lesion development and hemorrhage in murine models of aggressive Pdcd10/Ccm3 disease.
        Stroke. 2019; 50: 738-744
        • Shenkar R.
        • Shi C.
        • Rebeiz T.
        • et al.
        Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations.
        Genet Med. 2015; 17: 188-196
        • Wang K.
        • Zhou J.
        • Wang M.
        CCM3 and cerebral cavernous malformation disease.
        Stroke Vasc Neurol. 2019; 4: 67-70
        • Cutsforth-Gregory J.K.
        • Lanzino G.
        • Link M.J.
        • Brown Jr., R.D.
        • Flemming K.D.
        Characterization of radiation-induced cavernous malformations and comparison with a nonradiation cavernous malformation cohort.
        J Neurosurg. 2015; 122: 1214-1222
        • Salman R.A.-S.
        • Berg M.J.
        • Morrison L.
        • Awad I.
        • Angioma Alliance Scientific Advisory Board
        Hemorrhage from cavernous malformations of the brain: definition and reporting standards.
        Stroke. 2008; 39: 3129-3130
        • Flemming K.D.
        • Kumar S.
        • Brown Jr., R.D.
        • Lanzino G.
        Predictors of initial presentation with hemorrhage in patients with cavernous malformations [published online October 9, 2019]. World Neurosurg.
        • Agosti E.
        • Flemming K.D.
        • Lanzino G.
        Symptomatic cavernous malformation presenting with seizure without hemorrhage: analysis of factors Influencing clinical presentation.
        World Neurosurg. 2019; 129: e387-e392
        • Goyal A.
        • Rinaldo L.
        • Alkhataybeh R.
        • et al.
        Clinical presentation, natural history and outcomes of intramedullary spinal cord cavernous malformations.
        J Neurol Neurosurg Psychiatry. 2019; 90: 695-703
        • Labauge P.
        • Bouly S.
        • Parker F.
        • et al.
        Outcome in 53 patients with spinal cord cavernomas.
        Surgical Neurology. 2008; 70: 176-181
        • Lobato R.D.
        • Perez C.
        • Rivas J.J.
        • Cordobes F.
        Clinical, radiological, and pathological spectrum of angiographically occult intracranialvascular malformations: analysis of 21 cases and review of the literature.
        J Neurosurg. 1988; 68: 518-531
        • Vaquero J.
        • Leunda G.
        • Martinez R.
        • Bravo G.
        Cavernomas of the brain.
        Neurosurgery. 1983; 12: 208-210
        • Flemming K.D.
        • Kumar S.
        • Lanzino G.
        • Brinjikji W.
        Baseline and evolutionary radiologic features in sporadic, hemorrhagic brain cavernous malformations.
        AJNR Am J Neuroradiol. 2019; 40: 967-972
        • Gross B.A.
        • Du R.
        Hemorrhage from cerebral cavernous malformations: a systematic pooled analysis.
        J Neurosurg. 2017; 126: 1079-1087
        • Taslimi S.
        • Modabbernia A.
        • Amin-Hanjani S.
        • Barker F.G.
        • Macdonald R.L.
        Natural history of cavernous malformation: systematic review and meta-analysis of 25 studies.
        Neurology. 2016; 86: 1984-1991
        • Aiba T.
        • Tanaka R.
        • Koike T.
        • Kameyama S.
        • Takeda N.
        • Komata T.
        Natural history of intracranial cavernous malformations.
        J Neurosurg. 1995; 83: 56-59
        • Kim D.S.
        • Park Y.G.
        • Choi J.U.
        • Chung S.S.
        • Lee K.C.
        An analysis of the natural history of cavernous malformations.
        Surg Neurol. 1997; 48: 9-18
        • Kondziolka D.
        • Lunsford L.D.
        • Kestle J.R.
        The natural history of cerebral cavernous malformations.
        J Neurosurg. 1995; 83: 820-824
        • Labauge P.
        • Brunereau L.
        • Lévy C.
        • Laberge S.
        • Houtteville J.P.
        The natural history of familial cerebral cavernomas: a retrospective MRI study of 40 patients.
        Neuroradiology. 2000; 42: 327-332
        • Porter P.J.
        • Willinsky R.A.
        • Harper W.
        • Wallace M.C.
        Cerebral cavernous malformations: natural history and prognosis after clinical deterioration with or without hemorrhage.
        J Neurosurg. 1997; 87: 190-197
        • Barker F.G.
        • Amin-Hanjani S.
        • Butler W.E.
        • et al.
        Temporal clustering of hemorrhages from untreated cavernous malformations of the central nervous system.
        Neurosurgery. 2001; 49: 15-25
        • Duffau H.
        • Capelle L.
        • Sichez J.P.
        • et al.
        Early radiologically proven rebleeding from intracranial cavernous angiomas: report of 6 cases and review of the literature.
        Acta Neurochir (Wien). 1997; 139: 914-922
        • Moriarity J.
        • Clatterbuck R.
        • Rigamonti D.
        The natural history of cavernous malformations.
        Neurosurg Clin N Am. 1999; 10: 411-417
        • Robinson J.R.
        • Awad I.A.
        • Little J.R.
        Natural history of the cavernous angioma.
        J Neurosurg. 1991; 75: 709-714
        • Josephson C.B.
        • Leach J.P.
        • Duncan R.
        • Roberts R.C.
        • Counsell C.E.
        • Al-Shahi Salman R.
        Seizure risk from cavernous or arteriovenous malformations: prospective population-based study.
        Neurology. 2011; 76: 1548-1554
        • Rinkel L.A.
        • Salman R.A.-S.
        • Rinkel G.J.
        • Greving J.P.
        Radiosurgical, neurosurgical or no intervention for cerebral cavernous malformaitons: a decision analysis [published online May 23, 2019]. Int J Stroke.
        • Giliberto G.
        • Lanzino D.J.
        • Diehn F.E.
        • Factor D.
        • Flemming K.D.
        • Lanzino G.
        Brainstem cavernous malformations: anatomical, clinical, and surgical considerations.
        Neurosurg Focus. 2010; 29: E9
        • Nagy G.
        • Burkitt W.
        • Stokes S.S.
        • et al.
        Contemporary radiosurgery of cerebral cavernous malformations, part 1: treatment outcome for critically located hemorrhagic lesions [published online July 27, 2018]. J Neurosurg.
        • Nagy G.
        • Stokes S.S.
        • Eross L.G.
        • et al.
        Contemporary radiosurgery of cerebral cavernous malformations, part 2: treatment outcome for hemispheric lesions [published online July 1, 2018]. J Neurosurg.
        • Shimamoto S.
        • Wu C.
        • Sperling M.R.
        Laser interstitial thermal therapy in drug-resistant epilepsy.
        Curr Opin Neurol. 2019; 32: 237-245
        • Rosenow F.
        • Alonso-Vanegas M.A.
        • Baumgartner C.
        • et al.
        Cavernoma-related epilepsy: review and recommendations for mangement: report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies.
        Epilepsia. 2013; 54: 2025-2035
        • Moran N.F.
        • Fish D.R.
        • Kitchen N.
        • Shorvon S.
        • Kendall B.E.
        • Stevens J.M.
        Supratentorial cavernous haemangiomas and epilepsy: a review of the literature and case series.
        J Neurol Neurosurg Psychiatry. 1999; 66: 561-568
        • Cappabianca P.
        • Alfieri A.
        • Maiuri F.
        • Mariniello G.
        • Cirillo S.
        • de Divitiis E.
        Supratentorial cavernous malformations and epilepsy: seizure outcome after lesionectomy on a series of 35 patients.
        Clin Neurol Neurosurg. 1997; 99: 179-183
        • Yeon J.Y.
        • Kim J.S.
        • Choi S.J.
        • Seo D.W.
        • Hong S.B.
        • Hong S.C.
        Supratentorial cavernous angiomas presenting with seizures: surgical outcomes in 60 consecutive patients.
        Seizure. 2009; 18: 14-20
        • Hammen T.
        • Romstock J.
        • Dorfler A.
        • Kerling F.
        • Buchfelder M.
        • Stefan H.
        Prediction of postoperative outcome with special respect to removal of hemosiderin fringe: a study in patients with cavernous haemangiomas associated with symptomatic epilepsy.
        Seizure. 2007; 16: 248-253
        • Baumann C.R.
        • Acciarri N.
        • Bertalanffy H.
        • et al.
        Seizure outcome after resection of supratentorial cavernous malformations: a study of 168 patients.
        Epilepsia. 2007; 48: 559-563
        • Bervini D.
        • Jaeggi C.
        • Mordasini P.
        • Schucht P.
        • Raabe A.
        Antithrombotic medication and bleeding risk in patients with cerebral cavernous malformations: a cohort study [published online June 1, 2018]. J Neurosurg.
        • Flemming K.D.
        • Link M.J.
        • Christianson T.J.
        • Brown Jr., R.D.
        Use of antithrombotic agents in patients with intracerebral cavernous malformations.
        J Neurosurg. 2013; 118: 43-46
        • Zuurbier S.M.
        • Hickman C.R.
        • Tolias C.S.
        • et al.
        Long-term antithrombotic therapy and risk of intracranial haemorrhage from cerebral cavernous malformations: a population-based cohort study, systematic review, and meta-analysis.
        Lancet Neurol. 2019; 18: 935-941
        • Retta S.F.
        • Glading A.J.
        Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: two sides of the same coin.
        Int J Biochem Cell Biol. 2016; 81: 254-270
        • Kalani M.Y.
        • Zabramski J.M.
        Risk for symptomatic hemorrhage of cerebral cavernous malformations during pregnancy.
        J Neurosurg. 2013; 118: 50-55
        • Witiw C.D.
        • Abou-Hamden A.
        • Kulkarni A.V.
        • Silvaggio J.A.
        • Schneider C.
        • Wallace M.C.
        Cerebral cavernous malformations and pregnancy: hemorrhage risk and influence on obstetrical management.
        Neurosurgery. 2012; 71 (discussion 631): 626-630
        • Apra C.
        • Dumot C.
        • Bourdillon P.
        • Pelissou-Guyotat I.
        Could propranolol be beneficial in adult cerebral cavernous malformations?.
        Neurosurg Rev. 2019; 42: 403-408
        • Berti I.
        • Marchetti F.
        • Skabar A.
        • Zennaro F.
        • Zanon D.
        • Ventura A.
        Propranolol for cerebral cavernous angiomatosis: a magic bullet.
        Clin Pediatr (Phila). 2014; 53: 189-190
        • Goldberg J.
        • Jaeggi C.
        • Schoeni D.
        • Mordasini P.
        • Raabe A.
        • Bervini D.
        Bleeding risk of cerebral cavernous malformations in patients on β-blocker medication: a cohort study [published online June 15, 2018]. J Neurosurg.
        • Reinhard M.
        • Schuchardt F.
        • Meckel S.
        • et al.
        Propranolol stops progressive multiple cerebral cavernoma in an adult patient.
        J Neurol Sci. 2016; 367: 15-17
        • Zabramski J.M.
        • Kalani M.Y.
        • Filippidis A.S.
        • Spetzler R.F.
        Propranolol treatment of cavernous malformations with symptomatic hemorrhage.
        World Neurosurg. 2016; 88: 631-639
      1. Angioma Alliance website.
        • Fischer A.
        • Zalvide J.
        • Faurobert E.
        • Albiges-Rizo C.
        • Tournier-Lasserve E.
        Cerebral cavernous malformations: from CCM genes to endothelial homeostasis.
        Trends Mol Med. 2013; 19: 302-308
        • Choquet H.
        • Pawlikowska L.
        • Nelson J.
        • et al.
        Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity.
        Cerebrovasc Dis. 2014; 38: 433-440
        • Kumar S.
        • Lanzino G.
        • Brinjikji W.
        • Hocquard K.W.
        • Flemming K.D.
        Infratentorial developmental venous abnormalities and inflammation increase odds of sporadic cavernous malformation.
        J Stroke Cerebrovasc Dis. 2019; 28: 1662-1667
        • Tang A.T.
        • Choi J.P.
        • Kahn M.L.
        Endothelial TLR4 and the microbiome drive cerebral cavernous malformations.
        Nature. 2017; 545: 305-310
        • Chohan M.O.
        • Marchio S.
        • Morrison L.A.
        • et al.
        Emerging pharmacologic targets in cerebral cavernous malformation and potential strategies to alter the natural history of a difficult disease: a review.
        JAMA Neurol. 2019; 76: 492-500
        • Gibson C.C.
        • Zhu W.
        • Davis C.T.
        • et al.
        Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation.
        Circulation. 2015; 131: 289-299
        • De Luca E.
        • Pedone D.
        • Moglianetti M.
        • et al.
        Multifunctional platinum@BSA-rapamycin nanocarriers for the combinatorial therapy of cerebral cavernous malformation.
        ACS Omega. 2018; 3: 15389-15398
        • Wustehube J.
        • Bartol A.
        • Liebler S.S.
        • et al.
        Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling.
        Proc Natl Acad Sci U S A. 2010; 107: 12640-12645
        • Bravi L.
        • Rudini N.
        • Cuttano R.
        • et al.
        Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice.
        Proc Natl Acad Sci U S A. 2015; 112: 8421-8426
        • McDonald D.A.
        • Shi C.
        • Shenkar R.
        • et al.
        Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease.
        Stroke. 2012; 43: 571-574
        • Shenkar R.
        • Shi C.
        • Austin C.
        • et al.
        RhoA kinase inhibition with fasudil versus simvastatin in murine models of cerebral cavernous malformations.
        Stroke. 2017; 48: 187-194
        • Weiner G.M.
        • Ducruet A.F.
        Fasudil slows development of cavernous malformations.
        Neurosurgery. 2017; 80: N25-N27
        • Girard R.
        • Fam M.D.
        • Zeineddine H.A.
        • et al.
        Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations.
        J Neurosurg. 2017; 127: 102-110
        • Mikati A.G.
        • Khanna O.
        • Zhang L.
        • et al.
        Vascular permeability in cerebral cavernous malformations.
        J Cereb Blood Flow Metab. 2015; 35: 1632-1639
        • Mikati A.
        • Tan H.
        • Shenkar R.
        • et al.
        Dynamic permeability and quantitative susceptibility: related imaging biomarkers in cerebral cavernous malformations.
        Stroke. 2014; 45: 598-601
        • Hart B.L.
        • Taheri S.
        • Rosenberg G.A.
        • Morrison L.A.
        Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.
        Transl Stroke Res. 2013; 4: 500-506
        • Girard R.
        • Khanna O.
        • Shenkar R.
        • et al.
        Peripheral plasma vitamin D and non-HDL cholesterol reflect the severity of cerebral cavernous malformation disease.
        Biomark Med. 2016; 10: 255-264
        • Girard R.
        • Zeineddine H.A.
        • Koskimaki J.
        • et al.
        Plasma biomarkers of inflammation and angiogenesis predict cerebral cavernous malformation symptomatic hemorrhage or lesional growth.
        Circ Res. 2018; 122: 1716-1721
        • Polster S.P.
        • Cao Y.
        • Carroll T.
        • et al.
        Trial Readiness in Cavernous Angiomas with Symptomatic Hemorrhage (CASH).
        Neurosurgery. 2019; 84: 954-964