Mayo Clinic Proceedings Home

Pharmacogenomics: Precision Medicine and Drug Response

      Abstract

      Pharmacogenomics is the use of genomic and other “omic” information to individualize drug selection and drug use to avoid adverse drug reactions and to maximize drug efficacy. The science underlying pharmacogenomics has evolved rapidly over the 50 years since it was first suggested that genetics might influence drug response phenotypes. That process has occurred in parallel with advances in DNA sequencing and other molecular technologies, with striking increases in our understanding of the human genome. There are now many validated examples of the clinical utility of pharmacogenomics, and this type of clinical genomic information is increasingly being generated in clinical laboratories, incorporated into electronic health records, and used to “tailor” or individualize drug therapy. This review will survey the origins and development of pharmacogenomics; it will address some of the challenges associated with the clinical implementation of pharmacogenomics; and it will attempt to foresee future advances in this important genomic discipline, one that almost certainly will be among the earliest and most widely adopted aspects of clinical genomics.

      Abbreviations and Acronyms:

      CYP ( cytochrome P450), EHR ( electronic health record), eMERGE ( Electronic Medical Records and Genomics), GWAS ( genome-wide association study), NGS ( next-generation sequencing), NIH ( National Institutes of Health), ns ( nonsynonymous), PGRN ( Pharmacogenomics Research Network), PK ( pharmacokinetic), SNP ( single nucleotide polymorphism), TPMT ( thiopurine S-methyltransferase), UGT ( UDP-glucuronosyltransferase)
      To read this article in full you will need to make a payment

      References

        • Weinshilboum R.M.
        • Wang L.
        Pharmacogenetics and pharmacogenomics: development, science, and translation.
        Annu Rev Genomics Hum Genet. 2006; 7: 223-245
        • Wang L.
        • McLeod H.L.
        • Weinshilboum R.M.
        Genomics and drug response.
        N Engl J Med. 2011; 364: 1144-1153
        • Giacomini K.M.
        • Yee S.W.
        • Ratain M.G.
        • Weinshilboum R.M.
        • Kamatani N.
        • Nakamura Y.
        Pharmacogenomics and patient care: one size does not fit all.
        Sci Transl Med. 2012; 4: 153ps18
        • Motulsky A.G.
        Drug reactions enzymes and biochemical genetics.
        J Am Med Assoc. 1957; 165: 835-837
        • Kalow W.
        Familial incidence of low pseudocholinesterase level.
        Lancet. 1956; 268: 576-577
        • Kalow W.
        • Staron N.
        On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers.
        Can J Biochem Physiol. 1957; 35: 1305-1320
        • Bonicke R.
        • Lisboa B.P.
        Über die Erbbedingtheit der intraindividuellen Konstanz der Isoniazidausscheidung beim Menschen.
        Naturwissenschaften. 1957; 44 ([in German]): 314-320
        • Evans D.A.
        • Manley K.A.
        • McKusick V.A.
        Genetic control of isoniazid metabolism in man.
        Br Med J. 1960; 2: 485-491
        • Evans D.A.
        • Storey P.B.
        • McKusick V.A.
        Further observations on the determination of isoniazid inactivator phenotype.
        Bull Johns Hopkins Hosp. 1961; 108: 60-66
        • Weinshilboum R.M.
        • Sladek S.L.
        Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity.
        Am J Hum Genet. 1980; 32: 651-662
        • Lennard L.
        • Van Loon J.A.
        • Weinshilboum R.M.
        Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism.
        Clin Pharmacol Ther. 1989; 46: 149-154
        • Mahgoub A.
        • Idle J.R.
        • Dring L.G.
        • Lancaster R.
        • Smith R.L.
        Polymorphic hydroxylation of Debrisoquine in man.
        Lancet. 1977; 2: 584-586
        • Eichelbaum M.
        • Spannbrucker N.
        • Dengler H.J.
        A probable genetic defect of the metabolism of sparteine.
        in: Gorrod J. Biological Oxidation of Nitrogen. Elsevier/North Holland Biomedical Press, Amsterdam1978: 113-118
        • Gonzalez F.J.
        • Skoda R.C.
        • Kimura S.
        • et al.
        Characterization of the common genetic defect in humans deficient in debrisoquine metabolism.
        Nature. 1988; 331: 442-446
        • Broly F.
        • Gaedigk A.
        • Heim M.
        • Eichelbaum M.
        • Morike K.
        • Meyer U.A.
        Debrisoquine/sparteine hydroxylation genotype and phenotype: analysis of common mutations and alleles of CYP2D6 in a European population.
        DNA Cell Biol. 1991; 10: 545-558
      1. The HLA Adverse Drug Reaction Database. Allele frequencies in worldwide populations. http://www.allelefrequencies.net/default.asp. Accessed September 16, 2017.

        • Weinshilboum R.
        • Aksoy I.
        Sulfation pharmacogenetics in humans.
        Chem Biol Interact. 1994; 92: 233-246
        • Weinshilboum R.M.
        • Otterness D.M.
        • Aksoy I.A.
        • Wood T.C.
        • Her C.
        • Raftogianis R.B.
        Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes.
        FASEB J. 1997; 11: 3-14
        • Weinshilboum R.M.
        Methylation pharmacogenetics: thiopurine methyltransferase as a model system.
        Xenobiotica. 1992; 22: 1055-1071
        • Weinshilboum R.M.
        • Otterness D.M.
        • Szumlanski C.L.
        Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase.
        Annu Rev Pharmacol Toxicol. 1999; 39: 19-52
        • Owens I.S.
        • Ritter J.K.
        Gene structure at the human UGT1 locus creates diversity in isozyme structure, substrate specificity, and regulation.
        Prog Nucleic Acid Res Mol Biol. 1995; 51: 305-338
        • Bosma P.J.
        • Chowdhury J.R.
        • Bakker C.
        • et al.
        The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome.
        N Engl J Med. 1995; 333: 1171-1175
        • Iyer L.
        • King C.D.
        • Whitington P.F.
        • et al.
        Genetic predisposition to the metabolism of irinotecan (CPT-11): role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) inhuman liver microsomes.
        J Clin Invest. 1998; 101: 847-854
        • Szumlanski C.
        • Otterness D.
        • Her C.
        • et al.
        Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism.
        DNA Cell Biol. 1996; 15: 17-30
        • Tai H.L.
        • Krynetski E.Y.
        • Yates C.R.
        • et al.
        Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians.
        Am J Hum Genet. 1996; 58: 694-702
        • Tai H.L.
        • Fessing M.Y.
        • Bonten E.J.
        • et al.
        Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C.
        Pharmacogenetics. 1999; 9: 641-650
        • Wang L.
        • Sullivan W.
        • Toft D.
        • Weinshilboum R.
        Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation.
        Pharmacogenetics. 2003; 13: 555-564
        • Wang L.
        • Nguyen T.V.
        • McLaughlin R.W.
        • Sikkink L.A.
        • Ramirez-Alvarado M.
        • Weinshilboum R.M.
        Human thiopurine S-methyltransferase pharmacogenetics: variant allozyme misfolding and aggresome formation.
        Proc Natl Acad Sci U S A. 2005; 102: 9394-9399
      2. Table of pharmacogenomic biomarkers in drug labeling. US Food and Drug Administration. https://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed September 16, 2017.

      3. CPIC guidelines. NIH PRGN and PharmGKB. https://cpicpgx.org/guidelines/. Accessed September 16, 2017.

        • van der Wouden C.H.
        • Cambon-Thomsen A.
        • Cecchin E.
        • et al.
        • Ubiquitous Pharmacogenomics Consortium
        Implementing pharmacogenomics in Europe: design and implementation strategy of the Ubiquitous Pharmacogenomics Consortium.
        Clin Pharmacol Ther. 2017; 101: 341-358
      4. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. Ingelman-Sundberg M. http://www.cypalleles.ki.se. Accessed September 16, 2017.

        • Ingle J.N.
        • Liu M.
        • Wickerham D.L.
        • et al.
        Selective estrogen receptor modulators and pharmacogenomic variation in ZNF423 regulation of BRCA1 expression: individualized breast cancer prevention.
        Cancer Discov. 2013; 3: 812-825
        • Olson J.E.
        • Rohrer Vitek C.R.
        • et al.
        Participant-perceived understanding and perspectives on pharmacogenomics: the Mayo Clinic RIGHT protocol (Right Drug, Right Dose, Right Time).
        Genet Med. 2017; 19: 819-825
        • Caraballo P.J.
        • Bielinski S.J.
        • St Sauver J.L.
        • Weinshilboum R.M.
        Electronic medical record-integrated pharmacogenomics and related clinical decision support concepts.
        Clin Pharmacol Ther. 2017; 102: 254-264
        • Ji Y.
        • Skierka J.M.
        • Blommel J.H.
        • et al.
        Preemptive pharmacogenomic testing for precision medicine: a comprehensive analysis of five actionable pharmacogenomic genes using next-generation DNA sequencing and a customized CYP2D6 genotyping cascade.
        J Mol Diagn. 2016; 18: 438-445
        • Link E.
        • Parish S.
        • Armitage J.
        • et al.
        • SEARCH Collaborative Group
        SLCO1B1 variants and statin-induced myopathy—a genomewide study.
        N Engl J Med. 2008; 359: 789-799
      5. GTEx Portal. Broad Institute of Harvard and MIT. https://www.gtexportal.org/home/. Accessed September 16, 2017.

        • Ho M.F.
        • Bongartz T.
        • Liu M.
        • et al.
        Estrogen, SNP-dependent chemokine expression and selective estrogen receptor modulator regulation.
        Mol Endocrinol. 2016; 30: 382-398
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        • Exome Aggregation Consortium
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Gupta M.
        • Neavin D.
        • Liu D.
        • et al.
        TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics.
        Mol Psychiatry. 2016; 21: 1717-1725