Can Changes in Guidelines on the Use of Antibiotic Prophylaxis Before Invasive Dental Procedures Tell Us Whether Antibiotic Prophylaxis Is Effective in Preventing Infective Endocarditis?

This issue of Mayo Clinic Proceedings contains an important report by DeSimone et al1 that investigates the effect of the 2007 American Heart Association (AHA) guidelines on the prescribing of antibiotic prophylaxis (AP) by dentists to protect patients at risk for infective endocarditis (IE) from developing the disease after invasive dental procedures. Infective endocarditis affects the endocardial lining of the heart, particularly the valve leaflets, and has a yearly incidence of 3 to 10 per 100,000 in most parts of the world.2 It is characterized by the development of infected heart valve vegetations, and the prognosis is poor, with 15% to 20% mortality during the initial hospital admission, increasing to approximately 30% by the end of the first year.3 The concept that bacteria released into the circulation during invasive dental procedures might cause IE was first suggested by Lewis and Grant in 1923,4 and in 1935 Okell and Elliott5 discovered that after dental extractions, 61% of patients had a positive blood culture for oral viridans group streptococci. The latter group also found that oral viridans group streptococci could be isolated from the damaged heart tissue of 40% to 45% of patients with IE they examined.3

In 1955, soon after antibiotics became widely available, the AHA produced the first guidelines recommending the use of AP to prevent IE in individuals considered to be at risk for the disease and who were undergoing invasive procedures (including dental procedures). Over time, AP recommendations have become simpler and more focused. Before 2007, AHA guidelines recommended AP for those undergoing invasive dental procedures who were considered to be at high or moderate risk for IE, but in 2007 the AHA recommended that it should be given only to those at high risk.5 In 2009, the European Society of Cardiology (which sets guidance for most of Europe),6 and most other guideline committees around the world, followed suit. The exception was the United Kingdom, where the quasi-governmental National Institute for Health and Care Excellence (NICE) recommended the complete cessation of AP in 2008.7 This decision was based on the lack of placebo randomized controlled trial (RCT) evidence to support the efficacy of AP and their assessment of the lack of cost-effectiveness of AP.

The best evidence for AP efficacy would come from an RCT. Unfortunately, an RCT has never been performed, and it is unlikely that one will be performed in the foreseeable future. Antibiotic prophylaxis is a prevention strategy, and IE is comparatively rare. This means that hundreds of patients at risk for endocarditis would need to receive AP to prevent 1 case, and many thousands of individuals at risk for endocarditis would need to be randomized to receive placebo or prophylaxis to have sufficient statistical power to detect an effect.8 This means that the size, cost, and complexity of an RCT would be enormous. A further barrier is the ethical concern about randomizing individuals at risk for endocarditis to receive placebo.

An alternative is to use observational studies to see whether changes in AP guidelines have altered the incidence of IE, and several studies have done this. DeSimone et al1 refer to the observational study by Dayer et al9 This study used administrative data for the whole of England to study the effect of the 2008 NICE guidelines on the prescribing of AP and the incidence of IE in England. It found an 89% decrease in AP prescribing and a significant increase in the incidence of IE. As observational data, however, the research by...
Dayer et al did not prove a cause-and-effect relationship between these changes and the 2008 NICE guidance and, therefore, did not meet the criteria set by NICE to change its guidance. Nonetheless, after further debate, as well as the publication of data showing the low incidence of adverse drug reactions with AP10 and the cost-effectiveness of AP,11 NICE amended its guidance in 2016 to make clear that in individual cases, AP may be appropriate.12

The study by Dayer et al9 also showed the very large population needed to achieve the statistical power to identify a significant increase in the incidence of IE associated with changes in AP prescribing.9 In the study by Dayer et al, NICE guidance changed from recommending AP for moderate- and high-risk individuals to recommending no AP. The population needed to power a study looking at a change from recommending AP for those at moderate and high risk for IE to recommending it only for those at high risk would be even larger than the number needed to power the study by Dayer et al. Unfortunately, several of the studies that claimed to demonstrate no change in the incidence of IE after AHA or European Society of Cardiology guideline changes were underpowered to detect a change.13 This means that we cannot be sure whether there really was no change in IE incidence or whether the lack of change was caused by the study having insufficient power to detect it. It is important, therefore, to ensure that such studies are adequately powered.

Recently, several studies, such as that by Dayer et al,9 have used large administrative data sets to increase the population size being studied when looking at the effect of the AHA or European Society of Cardiology guideline changes, and some have claimed to demonstrate a significant increase in IE after AHA or European Society of Cardiology guideline changes were underpowered to detect a change.13 This means that we cannot be sure whether there really was no change in IE incidence or whether the lack of change was caused by the study having insufficient power to detect it. It is important, therefore, to ensure that such studies are adequately powered.

DeSimone et al1 also identified some concerns, however. Although there was the expected fall in AP prescribing for individuals at moderate risk for IE, they also identified a significant reduction in AP prescribing for those at high risk. Specifically, the proportion of high-risk individuals who should have received AP decreased from 96.9% before 2007 to 81.3% after ($P = .02$), suggesting that a significant proportion of those who should have received AP did not. The fall was even larger, from 98% to 80.2% ($P = .03$), for dental cleaning visits. This is worrisome because a whole-mouth dental cleaning (also known as scaling) is one of the most bacteremia-inducing dental procedures, particularly in those with poor oral hygiene.

On the other hand, a reduction in AP prescribing for nonindicated dental procedures from 7.1% to 0%1 suggests that the description of those dental procedures that should be covered by AP are much clearer in the 2007 AHA guidelines than before. The decrease in AP prescribing to those at high risk for IE since the 2007 guidelines and the continued prescribing of AP to 8.6% of individuals at moderate risk for IE (noted in the study by DeSimone et al)1 mirrors similar findings in a study of Canadian dentists and hygienists18 and suggests some difficulty on the part of dentists in distinguishing high-risk from moderate-risk patients. This is perhaps not surprising because the categorization of

http://dx.doi.org/10.1016/j.mayocp.2017.04.005
www.mayoclinicproceedings.org
patients is based on cardiologic diagnoses and procedures that, although familiar to cardiologists, are not familiar to many dentists. In particular, congenital and native valve conditions and more complex cardiac repair procedures can be difficult for a noncardiologist to categorize, and the dentist is frequently reliant on the patient’s understanding of his or her condition, which is often poor, to categorize it. As concluded by DeSimone et al., continued medical education of dentists and other clinicians is needed to better ensure compliance with national guidelines. However, simplification of risk stratification and the terminology used to describe it would also help. Perhaps most important, however, would be better communication between cardiologists and dentists. Cardiologists are best placed to identify the risk status of their patient and the need for AP, and the dentist is best placed to identify when a risk-prone dental procedure needs to be performed and, therefore, when AP is needed. Clear and direct communication between the cardiologist and the dentist, therefore, is essential. Patients also need to be fully informed of their risk status and the potential benefits and disadvantages of AP so that they can participate in the decision making. Again this is perhaps a discussion best undertaken by the cardiologist, but it is clearly very important that the dentist is kept fully informed.

In conclusion, DeSimone et al. have published an interesting study that reports for the first time the high level of compliance by dentists with the most recent AHA guidelines on AP prescribing. This is critical information that needs to be validated on a larger scale. Such additional data are needed to support large administrative data studies on the incidence of IE if we are to understand the real effect of the 2007 AHA guideline changes. Importantly, the study by DeSimone et al also helps us identify deficiencies in guideline compliance, as well as possible ways to improve clinical practice.

Martin H. Thornhill, MBBS, BDS, PhD
Department of Oral Medicine, Pathology, and Surgery
School of Clinical Dentistry
University of Sheffield
Sheffield, United Kingdom

Correspondence: Address to Martin H. Thornhill, MBBS, BDS, PhD, Department of Oral Medicine, Pathology, and Surgery, School of Clinical Dentistry, University of Sheffield, Clarendon Crescent, Sheffield S11 2TA, United Kingdom (m.thornhill@sheffield.ac.uk).

REFERENCES

