Mayo Clinic Proceedings Home

Individualized Medicine in Gastroenterology and Hepatology

      Abstract

      After the completion of the Human Genome Project, there has been an acceleration in methodologies on sequencing nucleic acids (DNA and RNA) at a high precision and with ever-decreasing turnaround time and cost. Collectively, these approaches are termed next-generation sequencing and are already affecting the transformation of medical practice. In this symposium article, we highlight the current knowledge of the genetics of selected gastrointestinal tract and liver diseases, namely, inflammatory bowel disease, hereditary cholestatic liver disease, and familial colon cancer syndromes. In addition, we provide a stepwise approach to use next-generation sequencing methodologies for clinical practice with the goal to improve the diagnosis as well as management of and/or therapy of the chosen digestive diseases. This early experience of applying next-generation sequencing in the practice of gastroenterology and hepatology will delineate future best practices in the field, ultimately for the benefit of our patients.

      Abbreviations and Acronyms:

      AC ( Amsterdam criteria), AFAP ( attenuated familial adenomatous polyposis), APC ( adenomatous polyposis coli), CAP ( College of American Pathologists), CD ( Crohn disease), CLIA ( Clinical Laboratory Improvement Amendments), CRC ( colorectal cancer), dMMR ( deficient mismatch repair), EHR ( electronic health record), FAP ( familial adenomatous polyposis), GOB ( genomics odyssey board), IBD ( inflammatory bowel disease), IM ( Individualized Medicine), LRBA ( lipopolysaccharide responsive beige-like anchor), LS ( Lynch syndrome), MDR3 ( multidrug resistance 3), MLH1 ( mutL homolog 1), MMR ( mismatch repair), MUTYH or MYH ( MutY (E. coli) homolog), NGS ( next-generation sequencing), PFIC ( progressive familial intrahepatic cholestasis), pMMR ( proficient mismatch repair), UC ( ulcerative colitis), VEOIBD ( very early onset inflammatory bowel disease), WES ( whole exome sequencing)
      To read this article in full you will need to make a payment

      References

        • Molodecky N.A.
        • Soon I.S.
        • Rabi D.M.
        • et al.
        Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review.
        Gastroenterology. 2012; 142 (quiz e30): 46-54e42
        • Loftus Jr., E.V.
        • Silverstein M.D.
        • Sandborn W.J.
        • Tremaine W.J.
        • Harmsen W.S.
        • Zinsmeister A.R.
        Crohn's disease in Olmsted County, Minnesota, 1940-1993: incidence, prevalence, and survival.
        Gastroenterology. 1998; 114 ([published correction appears in Gastroenterology. 1999;116(6):1507]): 1161-1168
        • Loftus Jr., E.V.
        • Silverstein M.D.
        • Sandborn W.J.
        • Tremaine W.J.
        • Harmsen W.S.
        • Zinsmeister A.R.
        Ulcerative colitis in Olmsted County, Minnesota, 1940-1993: incidence, prevalence, and survival.
        Gut. 2000; 46: 336-343
        • Loftus C.G.
        • Loftus Jr., E.V.
        • Harmsen W.S.
        • et al.
        Update on the incidence and prevalence of Crohn's disease and ulcerative colitis in Olmsted County, Minnesota, 1940-2000.
        Inflamm Bowel Dis. 2007; 13: 254-261
        • Cosnes J.
        • Gower-Rousseau C.
        • Seksik P.
        • Cortot A.
        Epidemiology and natural history of inflammatory bowel diseases.
        Gastroenterology. 2011; 140: 1785-1794
        • Jostins L.
        • Ripke S.
        • Weersma R.K.
        • et al.
        Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.
        Nature. 2012; 491: 119-124
        • de Souza H.S.
        • Fiocchi C.
        Immunopathogenesis of IBD: current state of the art.
        Nat Rev Gastroenterol Hepatol. 2016; 13: 13-27
        • Moon W.
        • Loftus Jr., E.V.
        Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease.
        Aliment Pharmacol Ther. 2016; 43: 863-883
        • Haritunians T.
        • Taylor K.D.
        • Targan S.R.
        • et al.
        Genetic predictors of medically refractory ulcerative colitis.
        Inflamm Bowel Dis. 2010; 16: 1830-1840
        • Henckaerts L.
        • Van Steen K.
        • Verstreken I.
        • et al.
        Genetic risk profiling and prediction of disease course in Crohn's disease patients.
        Clin Gastroenterol Hepatol. 2009; 7: 972-980e2
        • Benchimol E.I.
        • Guttmann A.
        • Griffiths A.M.
        • et al.
        Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data.
        Gut. 2009; 58: 1490-1497
        • Heyman M.B.
        • Kirschner B.S.
        • Gold B.D.
        • et al.
        Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry.
        J Pediatr. 2005; 146: 35-40
        • Paul T.
        • Birnbaum A.
        • Pal D.K.
        • et al.
        Distinct phenotype of early childhood inflammatory bowel disease.
        J Clin Gastroenterol. 2006; 40: 583-586
        • Imielinski M.
        • Baldassano R.N.
        • Griffiths A.
        • et al.
        Common variants at five new loci associated with early-onset inflammatory bowel disease.
        Nat Genet. 2009; 41: 1335-1340
        • Kugathasan S.
        • Baldassano R.N.
        • Bradfield J.P.
        • et al.
        Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease.
        Nat Genet. 2008; 40: 1211-1215
        • Cutler D.J.
        • Zwick M.E.
        • Okou D.T.
        • et al.
        Dissecting allele architecture of early onset IBD using high-density genotyping.
        PLoS One. 2015; 10: e0128074
        • Uhlig H.H.
        Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease.
        Gut. 2013; 62: 1795-1805
        • Uhlig H.H.
        • Schwerd T.
        • Koletzko S.
        • et al.
        • COLORS in IBD Study Group and NEOPICS
        The diagnostic approach to monogenic very early onset inflammatory bowel disease.
        Gastroenterology. 2014; 147: 990-1007.e1003
        • Zhang Y.Z.
        • Li Y.Y.
        Inflammatory bowel disease: pathogenesis.
        World J Gastroenterol. 2014; 20: 91-99
        • Lazaridis K.N.
        • McAllister T.M.
        • Babovic-Vuksanovic D.
        • et al.
        Implementing individualized medicine into the medical practice.
        Am J Med Genet C Semin Med Genet. 2014; 166C: 15-23
        • Lazaridis K.N.
        • Schahl K.A.
        • Cousin M.A.
        • et al.
        • Individualized Medicine Clinic Members
        Outcome of whole exome sequencing for diagnostic odyssey cases of an individualized medicine clinic: the Mayo Clinic experience.
        Mayo Clin Proc. 2016; 91: 297-307
        • Lopez-Herrera G.
        • Tampella G.
        • Pan-Hammarström Q.
        • et al.
        Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity.
        Am J Hum Genet. 2012; 90: 986-1001
        • Lo B.
        • Zhang K.
        • Lu W.
        • et al.
        Autoimmune disease: patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy.
        Science. 2015; 349: 436-440
        • Trauner M.
        • Meier P.J.
        • Boyer J.L.
        Molecular pathogenesis of cholestasis.
        N Engl J Med. 1998; 339: 1217-1227
        • Verkade H.J.
        • Bezerra J.A.
        • Davenport M.
        • et al.
        Biliary atresia and other cholestatic childhood diseases: Advances and future challenges.
        J Hepatol. 2016; 65: 631-642
        • Fawaz R.
        • Baumann U.
        • Ekong U.
        • et al.
        Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN).
        J Pediatr Gastroenterol Nutr. 2017; 64: 154-168
        • Suchy F.J.
        Neonatal cholestasis.
        Pediatr Rev. 2004; 25: 388-396
        • Ovchinsky N.
        • Moreira R.K.
        • Lefkowitch J.H.
        • Lavine J.E.
        Liver biopsy in modern clinical practice: a pediatric point-of-view.
        Adv Anat Pathol. 2012; 19: 250-262
        • Johnson K.
        • Alton H.M.
        • Chapman S.
        Evaluation of mebrofenin hepatoscintigraphy in neonatal-onset jaundice.
        Pediatr Radiol. 1998; 28: 937-941
        • Russo P.
        • Magee J.C.
        • Boitnott J.
        • et al.
        • Biliary Atresia Research Consortium
        Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy.
        Clin Gastroenterol Hepatol. 2011; 9: 357-362.e362
        • Pittschieler K.
        • Massi G.
        Liver involvement in infants with PiSZ phenotype of α1-antitrypsin deficiency.
        J Pediatr Gastroenterol Nutr. 1992; 15: 315-318
        • Lang T.
        • Mühlbauer M.
        • Strobelt M.
        • Weidinger S.
        • Hadorn H.B.
        α1-Antitrypsin deficiency in children: liver disease is not reflected by low serum levels of α1-antitrypsin—a study on 48 pediatric patients.
        Eur J Med Res. 2005; 10: 509-514
        • Topic A.
        • Ljujic M.
        • Nikolic A.
        • et al.
        α1-Antitrypsin phenotypes and neutrophil elastase gene promoter polymorphisms in lung cancer.
        Pathol Oncol Res. 2011; 17: 75-80
        • Emerick K.M.
        • Rand E.B.
        • Goldmuntz E.
        • Krantz I.D.
        • Spinner N.B.
        • Piccoli D.A.
        Features of Alagille syndrome in 92 patients: frequency and relation to prognosis.
        Hepatology. 1999; 29: 822-829
        • Hartley J.L.
        • Gissen P.
        • Kelly D.A.
        Alagille syndrome and other hereditary causes of cholestasis.
        Clin Liver Dis. 2013; 17: 279-300
        • Kamath B.M.
        • Loomes K.M.
        • Piccoli D.A.
        Medical management of Alagille syndrome.
        J Pediatr Gastroenterol Nutr. 2010; 50: 580-586
        • Arnon R.
        • Annunziato R.
        • Miloh T.
        • et al.
        Orthotopic liver transplantation for children with Alagille syndrome.
        Pediatr Transplant. 2010; 14 ([published correction appears in Pediatr Transplant. 2011;15(1):122. Hiroshi, Sogawa [corrected to Sogawa, Hiroshi]]): 622-628
        • Srivastava A.
        Progressive familial intrahepatic cholestasis.
        J Clin Exp Hepatol. 2014; 4: 25-36
        • Morotti R.A.
        • Suchy F.J.
        • Magid M.S.
        Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings.
        Semin Liver Dis. 2011; 31: 3-10
        • Gonzales E.
        • Spraul A.
        • Jacquemin E.
        Clinical utility gene card for progressive familial intrahepatic cholestasis type 1.
        Eur J Hum Genet. 2014; 22 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953912/pdf/ejhg2013186a.pdf. Accessed April 5, 2017)
        • Gonzales E.
        • Spraul A.
        • Jacquemin E.
        Clinical utility gene card for progressive familial intrahepatic cholestasis type 2.
        Eur J Hum Genet. 2014; 22 (http://www.nature.com/ejhg/journal/v22/n4/pdf/ejhg2013187a.pdf. Accesssed April 5, 2017)
        • Gonzales E.
        • Spraul A.
        • Jacquemin E.
        Clinical utility gene card for progressive familial intrahepatic cholestasis type 3.
        Eur J Hum Genet. 2014; 22 (http://www.nature.com/ejhg/journal/v22/n4/pdf/ejhg2013188a.pdf. Accessed April 5, 2017)
        • Clayton P.T.
        Disorders of bile acid synthesis.
        J Inherit Metab Dis. 2011; 34: 593-604
        • Cheng J.B.
        • Jacquemin E.
        • Gerhardt M.
        • et al.
        Molecular genetics of 3β-hydroxy-Δ5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease.
        J Clin Endocrinol Metab. 2003; 88: 1833-1841
        • Schwarz M.
        • Wright A.C.
        • Davis D.L.
        • Nazer H.
        • Björkhem I.
        • Russell D.W.
        The bile acid synthetic gene 3β-hydroxy-Δ(5)-C(27)-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis.
        J Clin Invest. 2000; 106: 1175-1184
        • Setchell K.D.
        • Heubi J.E.
        Defects in bile acid biosynthesis—diagnosis and treatment.
        J Pediatr Gastroenterol Nutr. 2006; 43: S17-S22
        • Arya G.
        • Balistreri W.F.
        Pediatric liver disease in the United States: epidemiology and impact.
        J Gastroenterol Hepatol. 2002; 17: 521-525
        • Syngal S.
        • Brand R.E.
        • Church J.M.
        • Giardiello F.M.
        • Hampel H.L.
        • Burt R.W.
        • American College of Gastroenterology
        ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes.
        Am J Gastroenterol. 2015; 110 (quiz 263): 223-262
        • Elsayed F.A.
        • Kets C.M.
        • Ruano D.
        • et al.
        Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer.
        Eur J Hum Genet. 2015; 23: 1080-1084
        • Weren R.D.
        • Ligtenberg M.J.
        • Kets C.M.
        • et al.
        A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer.
        Nat Genet. 2015; 47: 668-671
        • Yurgelun M.B.
        • Allen B.
        • Kaldate R.R.
        • et al.
        Identification of a variety of mutations in cancer predisposition genes in patients with suspected Lynch syndrome.
        Gastroenterology. 2015; 149: 604-613.e620
        • Castells A.
        • Castellví-Bel S.
        • Balaguer F.
        Concepts in familial colorectal cancer: where do we stand and what is the future?.
        Gastroenterology. 2009; 137: 404-409
        • Aaltonen L.A.
        • Salovaara R.
        • Kristo P.
        • et al.
        Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease.
        N Engl J Med. 1998; 338: 1481-1487
        • Peltomäki P.
        • Lothe R.A.
        • Aaltonen L.A.
        • et al.
        Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome.
        Cancer Res. 1993; 53: 5853-5855
        • Kuiper R.P.
        • Vissers L.E.
        • Venkatachalam R.
        • et al.
        Recurrence and variability of germline EPCAM deletions in Lynch syndrome.
        Hum Mutat. 2011; 32: 407-414
        • Lindor N.M.
        • Burgart L.J.
        • Leontovich O.
        • et al.
        Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors.
        J Clin Oncol. 2002; 20: 1043-1048
        • Thibodeau S.N.
        • French A.J.
        • Cunningham J.M.
        • et al.
        Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1.
        Cancer Res. 1998; 58: 1713-1718
        • Kidambi T.D.
        • Blanco A.
        • Van Ziffle J.
        • Terdiman J.P.
        Constitutional MLH1 methylation presenting with colonic polyposis syndrome and not Lynch syndrome.
        Fam Cancer. 2016; 15: 275-280
        • Nitsche U.
        • Stögbauer F.
        • Späth C.
        • et al.
        Right sided colon cancer as a distinct histopathological subtype with reduced prognosis.
        Dig Surg. 2016; 33: 157-163
        • Warschkow R.
        • Sulz M.C.
        • Marti L.
        • et al.
        Better survival in right-sided versus left-sided stage I-III colon cancer patients.
        BMC Cancer. 2016; 16: 554
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • et al.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 372: 2509-2520
        • Provenzale D.
        • Gupta S.
        • Ahnen D.J.
        • et al.
        Genetic/familial high-risk assessment: colorectal version 1.2016, NCCN Clinical Practice Guidelines in oncology.
        J Natl Compr Canc Netw. 2016; 14: 1010-1030
        • Durno C.A.
        • Sherman P.M.
        • Aronson M.
        • et al.
        Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome.
        Eur J Cancer. 2015; 51: 977-983
        • Lindor N.M.
        • Rabe K.
        • Petersen G.M.
        • et al.
        Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X.
        JAMA. 2005; 293: 1979-1985
        • Half E.
        • Bercovich D.
        • Rozen P.
        Familial adenomatous polyposis.
        Orphanet J Rare Dis. 2009; 4: 22
        • Jasperson K.W.
        • Patel S.G.
        • Ahnen D.J.
        APC-associated polyposis conditions.
        in: Pagon R.A. Adam M.P. Ardinger H.H. GeneReviews®. University of Washington, Seattle, Seattle, WA1993-2007
        • Gardner E.J.
        Follow-up study of a family group exhibiting dominant inheritance for a syndrome including intestinal polyps, osteomas, fibromas and epidermal cysts.
        Am J Hum Genet. 1962; 14: 376-390
        • Hamilton S.R.
        • Liu B.
        • Parsons R.E.
        • et al.
        The molecular basis of Turcot's syndrome.
        N Engl J Med. 1995; 332: 839-847
        • Knudsen A.L.
        • Bülow S.
        • Tomlinson I.
        • Möslein G.
        • Heinimann K.
        • Christensen I.J.
        • AFAP Study Group
        Attenuated familial adenomatous polyposis: results from an international collaborative study.
        Colorectal Dis. 2010; 12: e243-e249
        • Al-Tassan N.
        • Chmiel N.H.
        • Maynard J.
        • et al.
        Inherited variants of MYH associated with somatic G:C-->T:A mutations in colorectal tumors.
        Nat Genet. 2002; 30: 227-232
        • Jones S.
        • Emmerson P.
        • Maynard J.
        • et al.
        Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C-->T:A mutations.
        Hum Mol Genet. 2002; 11: 2961-2967
        • Hegde M.
        • Ferber M.
        • Mao R.
        • Samowitz W.
        • Ganguly A.
        • Working Group of the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee
        ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis).
        Genet Med. 2014; 16: 101-116