Advertisement
Mayo Clinic Proceedings Home

Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia

      Abstract

      We report a case of chronic traumatic paraplegia in which epidural electrical stimulation (EES) of the lumbosacral spinal cord enabled (1) volitional control of task-specific muscle activity, (2) volitional control of rhythmic muscle activity to produce steplike movements while side-lying, (3) independent standing, and (4) while in a vertical position with body weight partially supported, voluntary control of steplike movements and rhythmic muscle activity. This is the first time that the application of EES enabled all of these tasks in the same patient within the first 2 weeks (8 stimulation sessions total) of EES therapy.

      Abbreviations and Acronyms:

      AIS (American Spinal Injury Association Impairment Scale), AUC (area under the curve), AVG (root mean square average), EES (epidural electrical stimulation), EMG (electromyography), EXT (leg extension), FLX (leg flexion), L (left limb), MG (medial gastrocnemius), MH (medial hamstrings), NR (no response), R (right limb), RF (rectus femoris), R FCR (right flexor carpi radialis), SCI (spinal cord injury), SOL (soleus), TA (tibialis anterior), VL (vastus lateralis)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kakulas B.A.
        Pathology of spinal injuries.
        Cent Nerv Syst Trauma. 1984; 1: 117-129
        • Sherwood A.M.
        • Dimitrijevic M.R.
        • McKay W.B.
        Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI.
        J Neurol Sci. 1992; 110: 90-98
        • Tuel S.
        • McKay W.B.
        • Dimitrijevic M.R.
        The discomplete syndrome: clinical implications of residual suprasegmental influence across a clinically complete spinal cord injury.
        Arch Phys Med Rehabil. 1992; 73: 1
        • Dimitrijevic M.R.
        • Hsu C.Y.
        • McKay W.B.
        Neurophysiological assessment of spinal cord and head injury.
        J Neurotrauma. 1992; 9: S293-S300
        • McKay W.B.
        • Lim H.K.
        • Priebe M.M.
        • Stokic D.S.
        • Sherwood A.M.
        Clinical neurophysiological assessment of residual motor control in post-spinal cord injury paralysis.
        Neurorehabil Neural Repair. 2004; 18: 144-153
        • Dimitrijevic M.R.
        • Gerasimenko Y.
        • Pinter M.M.
        Evidence for a spinal central pattern generator in humans.
        Ann N Y Acad Sci. 1998; 860: 360-376
        • Minassian K.
        • Jilge B.
        • Rattay F.
        • et al.
        Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials.
        Spinal Cord. 2004; 42: 401-416
        • Danner S.M.
        • Hofstoetter U.S.
        • Freundl B.
        • et al.
        Human spinal locomotor control is based on flexibly organized burst generators.
        Brain. 2015; 138: 577-588
        • Jilge B.
        • Minassian K.
        • Rattay F.
        • et al.
        Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation.
        Exp Brain Res. 2004; 154: 308-326
        • Harkema S.
        • Gerasimenko Y.
        • Hodes J.
        • et al.
        Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study.
        Lancet. 2011; 377: 1938-1947
        • Angeli C.A.
        • Edgerton V.R.
        • Gerasimenko Y.P.
        • Harkema S.J.
        Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans.
        Brain. 2014; 137: 1394-1409
        • Andrews J.C.
        • Stein R.B.
        • Roy F.D.
        Reduced postactivation depression of soleus H reflex and root evoked potential after transcranial magnetic stimulation.
        J Neurophysiol. 2015; 114: 485-492
        • Andrews J.C.
        • Stein R.B.
        • Roy F.D.
        Post-activation depression in the human soleus muscle using peripheral nerve and transcutaneous spinal stimulation.
        Neurosci Lett. 2015; 589: 144-149
        • Roy F.D.
        • Bosgra D.
        • Stein R.B.
        Interaction of transcutaneous spinal stimulation and transcranial magnetic stimulation in human leg muscles.
        Exp Brain Res. 2014; 232: 1717-1728
        • Sayenko D.G.
        • Atkinson D.A.
        • Floyd T.C.
        • et al.
        Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord.
        Neurosci Lett. 2015; 609: 229-234
        • Barthélemy D.
        • Willerslev-Olsen M.
        • Lundell H.
        • Biering-Sorensen F.
        • Nielsen J.B.
        Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury.
        Prog Brain Res. 2015; 218: 79-101
        • Squair J.W.
        • Bjerkefors A.
        • Inglis J.T.
        • Lam T.
        • Carpenter M.G.
        Cortical and vestibular stimulation reveal preserved descending motor pathways in individuals with motor-complete spinal cord injury.
        J Rehabil Med. 2016; 48: 589-596
        • Ilic T.V.
        • Pötter-Nerger M.
        • Holler I.
        • et al.
        Startle stimuli exert opposite effects on human cortical and spinal motor system excitability in leg muscles.
        Physiol Res. 2011; 60: S101-S106
        • Zehr E.P.
        • Frigon A.
        • Hoogenboom N.
        • Collins D.F.
        Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement.
        Exp Brain Res. 2004; 159: 382-388
        • Frigon A.
        • Collins D.F.
        • Zehr E.P.
        Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning.
        J Neurophysiol. 2004; 91: 1516-1523
        • Wolfe D.L.
        • Hayes K.C.
        • Potter P.J.
        • Delaney G.A.
        Conditioning lower limb H-reflexes by transcranial magnetic stimulation of motor cortex reveals preserved innervation in SCI patients.
        J Neurotrauma. 1996; 13: 281-291
        • Harkema S.J.
        • Schmidt-Read M.
        • Behrman A.L.
        • Bratta A.
        • Sisto S.A.
        • Edgerton V.R.
        Establishing the NeuroRecovery Network: multisite rehabilitation centers that provide activity-based therapies and assessments for neurologic disorders.
        Arch Phys Med Rehabil. 2012; 93: 1498-1507
        • Kendall F.P.
        • McCreary E.K.
        • Provance P.G.
        • Rodgers M.
        Muscles: Testing and Function, With Posture and Pain.
        Williams & Wilkins, Baltimore, MD1993
        • Sayenko D.G.
        • Angeli C.
        • Harkema S.J.
        • Edgerton V.R.
        • Gerasimenko Y.P.
        Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals.
        J Neurophysiol. 2014; 111: 1088-1099
        • Gerasimenko Y.
        • Lu D.
        • Modaber M.
        • et al.
        Noninvasive reactivation of motor descending control after paralysis.
        J Neurotrauma. 2015; 32: 1968-1980
        • Gerasimenko Y.
        • Gorodnichev R.
        • Moshonkina T.
        • Sayenko D.
        • Gad P.
        • Reggie Edgerton V.
        Transcutaneous electrical spinal-cord stimulation in humans.
        Ann Phys Rehabil Med. 2015; 58: 225-231
        • Rejc E.
        • Angeli C.
        • Harkema S.
        Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans.
        PLoS One. 2015; 10: e0133998
      1. Rejc E, Angeli CA, Bryant N, Harkema S. Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics [published online October 5, 2016]. J Neurotrauma. http://dx.doi.org/10.1089/neu.2016.4516.

        • Sherwood A.M.
        • McKay W.B.
        • Dimitrijevic M.R.
        Motor control after spinal cord injury: assessment using surface EMG.
        Muscle Nerve. 1996; 19: 966-979
        • Roby-Brami A.
        • Bussel B.
        Long-latency spinal reflex in man after flexor reflex afferent stimulation.
        Brain. 1987; 110: 707-725
        • Bussel B.
        • Roby-Brami A.
        • Néris O.R.
        • Yakovleff A.
        Evidence for a spinal stepping generator in man.
        Paraplegia. 1996; 34: 91-92
        • Bussel B.
        • Roby-Brami A.
        • Azouvi P.
        • Biraben A.
        • Yakovleff A.
        • Held J.P.
        Myoclonus in a patient with spinal cord transection: possible involvement of the spinal stepping generator.
        Brain. 1988; 111: 1235-1245
        • Fung J.
        • Stewart J.E.
        • Barbeau H.
        The combined effects of clonidine and cyproheptadine with interactive training on the modulation of locomotion in spinal cord injured subjects.
        J Neurol Sci. 1990; 100: 85-93
        • Calancie B.
        • Needham-Shropshire B.
        • Jacobs P.
        • Willer K.
        • Zych G.
        • Green B.A.
        Involuntary stepping after chronic spinal cord injury: evidence for a central rhythm generator for locomotion in man.
        Brain. 1994; 117: 1143-1159
        • Wernig A.
        • Müller S.
        Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries.
        Paraplegia. 1992; 30: 229-238
        • Harkema S.J.
        • Hurley S.L.
        • Patel U.K.
        • Requejo P.S.
        • Dobkin B.H.
        • Edgerton V.R.
        Human lumbosacral spinal cord interprets loading during stepping.
        J Neurophysiol. 1997; 77: 797-811
        • Alexeeva N.
        • Sames C.
        • Jacobs P.L.
        • et al.
        Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial.
        J Spinal Cord Med. 2011; 34: 362-379
        • Harkema S.J.
        • Hillyer J.
        • Schmidt-Read M.
        • Ardolino E.
        • Sisto S.A.
        • Behrman A.L.
        Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation.
        Arch Phys Med Rehabil. 2012; 93: 1588-1597
        • Lu D.C.
        • Edgerton V.R.
        • Modaber M.
        • et al.
        Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients.
        Neurorehabil Neural Repair. 2016; 30: 951-962