Advertisement
Mayo Clinic Proceedings Home

Association of Cardiorespiratory Fitness With Coronary Heart Disease in Asymptomatic Men

      Abstract

      Objective

      To examine the association of cardiorespiratory fitness (CRF) with risk of coronary heart disease (CHD) while controlling for an individual's Framingham Risk Score (FRS)–predicted CHD risk.

      Patients and Methods

      The study included 29,854 men from the Aerobics Center Longitudinal Study, who received a baseline examination from January 1, 1979, to December 31, 2002. Coronary heart disease events included self-reported myocardial infarction or revascularization or CHD death. Multivariable survival analysis investigated the association between CRF, FRS, and CHD. Cardiorespiratory fitness was analyzed as both a continuous and a categorical variable. The population was stratified by “low” and “moderate or high” risk of CHD to test for differences in the FRS stratified by CRF.

      Results

      Compared with men without incident CHD, men with incident CHD were older (mean age, 51.6 years vs 44.6 years), had lower average maximally achieved fitness (10.9 metabolic equivalent of tasks vs 12.0 metabolic equivalent of tasks [METs]), and were more likely to have moderate or high 10-year CHD risk (P<.001). Cardiorespiratory fitness, defined as maximal METs, exhibited a 20% lower risk of CHD (hazard ratio, 0.80; 95% CI, 0.77-0.83) for each 1-unit MET increase. Among men in the low CRF strata, individuals with moderate or high 10-year CHD risk, according to the FRS, had a higher CHD risk (hazard ratio, 6.55; 95% CI, 3.64-11.82) than men with low CHD risk according to the FRS.

      Conclusion

      Clinicians should promote physical activity to improve CRF so as to reduce CHD risk, even to patients with otherwise low CHD risk.

      Abbreviations and Acronyms:

      ACLS (Aerobics Center Longitudinal Study), CHD (coronary heart disease), CRF (cardiorespiratory fitness), CVD (cardiovascular disease), FRS (Framingham Risk Score), HDL-C (high-density lipoprotein cholesterol), HR (hazard ratio), MET (metabolic equivalent of task)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lloyd-Jones D.M.
        • Hong Y.
        • Labarthe D.
        • et al.
        American Heart Association Strategic Planning Task Force and Statistics Committee. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond.
        Circulation. 2010; 121: 586-613
        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • et al.
        • American Heart Association Statistics Committee and Stroke Statistics Subcommittee
        Heart disease and stroke statistics—2013 update: a report from the American Heart Association [published corrections appear in Circulation. 2013;127(23):e841 and Circulation. 2013;127(1):doi:10.1161/CIR.0b013e31828124ad].
        Circulation. 2013; 127: e6-e245
        • Scheidt S.
        Changing mortality from coronary heart disease among smokers and nonsmokers over a 20-year interval.
        Prev Med. 1997; 26: 441-446
        • Grossman E.
        • Messerli F.H.
        Diabetic and hypertensive heart disease.
        Ann Intern Med. 1996; 125: 304-310
        • Strauer B.E.
        Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve.
        Am J Cardiol. 1979; 44: 730-740
        • Wijeysundera H.C.
        • Machado M.
        • Farahati F.
        • et al.
        Association of temporal trends in risk factors and treatment uptake with coronary heart disease mortality, 1994-2005.
        JAMA. 2010; 303: 1841-1847
        • Kannel W.B.
        • McGee D.
        • Gordon T.
        A general cardiovascular risk profile: the Framingham Study.
        Am J Cardiol. 1976; 38: 46-51
        • Wilson P.W.
        • D'Agostino R.B.
        • Levy D.
        • Belanger A.M.
        • Silbershatz H.
        • Kannel W.B.
        Prediction of coronary heart disease using risk factor categories.
        Circulation. 1998; 97: 1837-1847
        • Tzoulaki I.
        • Liberopoulos G.
        • Ioannidis J.P.
        Assessment of claims of improved prediction beyond the Framingham risk score.
        JAMA. 2009; 302: 2345-2352
        • Pischon T.
        • Möhlig M.
        • Hoffmann K.
        • et al.
        Comparison of relative and attributable risk of myocardial infarction and stroke according to C-reactive protein and low-density lipoprotein cholesterol levels.
        Eur J Epidemiol. 2007; 22: 429-438
        • Gallo W.T.
        • Teng H.M.
        • Falba T.A.
        • Kasl S.V.
        • Krumholz H.M.
        • Bradley E.H.
        The impact of late career job loss on myocardial infarction and stroke: a 10 year follow up using the health and retirement survey.
        Occup Environ Med. 2006; 63: 683-687
        • Wilson P.W.
        • Bozeman S.R.
        • Burton T.M.
        • Hoaglin D.C.
        • Ben-Joseph R.
        • Pashos C.L.
        Prediction of first events of coronary heart disease and stroke with consideration of adiposity.
        Circulation. 2008; 118: 124-130
        • Blair S.N.
        • Kohl III, H.W.
        • Paffenbarger Jr., R.S.
        • Clark D.G.
        • Cooper K.H.
        • Gibbons L.W.
        Physical fitness and all-cause mortality: a prospective study of healthy men and women.
        JAMA. 1989; 262: 2395-2401
        • Wei M.
        • Gibbons L.W.
        • Kampert J.B.
        • Nichaman M.Z.
        • Blair S.N.
        Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes.
        Ann Intern Med. 2000; 132: 605-611
        • Lee I.M.
        • Paffenbarger Jr., R.S.
        Physical activity and its relation to cancer risk: a prospective study of college alumni.
        Med Sci Sports Exerc. 1994; 26: 831-837
        • Sui X.
        • Hooker S.P.
        • Lee I.M.
        • et al.
        A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women.
        Diabetes Care. 2008; 31: 550-555
        • Oja P.
        • Teräslinna P.
        • Partanen T.
        • Kärävä R.
        Feasibility of an 18 months' physical training program for middle-aged men and its effect on physical fitness.
        Am J Public Health. 1974; 64: 459-465
        • Lee C.D.
        • Blair S.N.
        • Jackson A.S.
        Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men.
        Am J Clin Nutr. 1999; 69: 373-380
        • Ekelund L.G.
        • Haskell W.L.
        • Johnson J.L.
        • Whaley F.S.
        • Criqui M.H.
        • Sheps D.S.
        Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men.
        N Engl J Med. 1988; 319: 1379-1384
        • Barlow C.E.
        • Defina L.F.
        • Radford N.B.
        • et al.
        Cardiorespiratory fitness and long-term survival in “low-risk” adults.
        J Am Heart Assoc. 2012; 1: e001354
        • Blair S.N.
        • Kannel W.B.
        • Kohl H.W.
        • Goodyear N.
        • Wilson P.W.
        Surrogate measures of physical activity and physical fitness: evidence for sedentary traits of resting tachycardia, obesity, and low vital capacity.
        Am J Epidemiol. 1989; 129: 1145-1156
        • Blair S.N.
        • Kohl III, H.W.
        • Barlow C.E.
        • Paffenbarger Jr., R.S.
        • Gibbons L.W.
        • Macera C.A.
        Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men.
        JAMA. 1995; 273: 1093-1098
        • Blair S.N.
        • Kampert J.B.
        • Kohl III, H.W.
        • et al.
        Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women.
        JAMA. 1996; 276: 205-210
        • Balke B.
        • Ware R.W.
        An experimental study of physical fitness of Air Force personnel.
        U S Armed Forces Med J. 1959; 10: 675-688
        • Sui X.
        • LaMonte M.J.
        • Blair S.N.
        Cardiorespiratory fitness as a predictor of nonfatal cardiovascular events in asymptomatic women and men.
        American J Epidemiol. 2007; 165: 1413-1423
        • Cooper K.H.
        • Pollock M.L.
        • Martin R.P.
        • White S.R.
        • Linnerud A.C.
        • Jackson A.
        Physical fitness levels vs selected coronary risk factors: a cross-sectional study.
        JAMA. 1976; 236: 166-169
        • Pollock M.L.
        • Foster C.
        • Schmidt D.
        • Hellman C.
        • Linnerud A.C.
        • Ward A.
        Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women.
        Am Heart J. 1982; 103: 363-373
        • Kagan A.
        • Gordon T.
        • Rhoads G.G.
        • Schiffman J.C.
        Some factors related to coronary heart disease incidence in Honolulu Japanese men: the Honolulu Heart Study.
        Int J Epidemiol. 1975; 4: 271-279
        • Anderson K.M.
        • Wilson P.W.
        • Odell P.M.
        • Kannel W.B.
        An updated coronary risk profile: a statement for health professionals.
        Circulation. 1991; 83: 356-362
        • D'Agostino Sr., R.B.
        • Vasan R.S.
        • Pencina M.J.
        • Wolf P.A.
        • et al.
        General cardiovascular risk profile for use in primary care: the Framingham Risk Study.
        Circulation. 2008; 117: 743-753
        • Gander J.
        • Sui X.
        • Hazlett L.J.
        • Cai B.
        • Hébert J.R.
        • Blair S.N.
        Factors related to coronary heart disease risk among men: validation of the Framingham Risk Score.
        Prev Chronic Dis. 2014; 11: E140
        • Hoffman J.I.
        A critical view of coronary reserve.
        Circulation. 1987; 75: I6-I11
        • Ford E.S.
        • Ajani U.A.
        • Croft J.B.
        • et al.
        Explaining the decrease in U.S. deaths from coronary disease, 1980-2000.
        N Engl J Med. 2007; 356: 2388-2398
        • Haffner S.M.
        • Lehto S.
        • Rönnemaa T.
        • Pyörälä K.
        • Laakso M.
        Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction.
        N Engl J Med. 1998; 339: 229-234
        • Kannel W.B.
        • McGee D.
        Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study.
        Diabetes Care. 1979; 2: 120-126
        • Doyle J.T.
        • Dawber T.R.
        • Kannel W.B.
        • Kinch S.H.
        • Kahn H.A.
        The relationship of cigarette smoking to coronary heart disease: the second report of the combined experience of the Albany, NY. and Framingham, Mass. studies.
        JAMA. 1964; 190: 886-890
        • Farrell S.W.
        • Kampert J.B.
        • Kohl III, H.W.
        • et al.
        Influences of cardiorespiratory fitness levels and other predictors on cardiovascular disease mortality in men.
        Med Sci Sports Exerc. 1998; 30: 899-905
        • Abudiab M.
        • Aijaz B.
        • Konecny T.
        • et al.
        Use of functional aerobic capacity based on stress testing to predict outcomes in normal, overweight, and obese patients.
        Mayo Clin Proc. 2013; 88: 1427-1434
        • Scheuer J.
        • Tipton C.M.
        Cardiovascular adaptations to physical training.
        Annu Rev Physiol. 1977; 39: 221-251
        • Blomqvist C.G.
        • Saltin B.
        Cardiovascular adaptations to physical training.
        Annu Rev Physiol. 1983; 45: 169-189
        • Herrlich H.C.
        • Raab W.
        • Gigee W.
        Influence of muscular training and of catecholamines on cardiac acetylcholine and cholinesterase.
        Arch Int Pharmacodyn Ther. 1960; 129: 201-215
        • Ehsani A.A.
        • Heath G.W.
        • Hagberg J.M.
        • Sobel B.E.
        • Holloszy J.O.
        Effects of 12 months of intense exercise training on ischemic ST-segment depression in patients with coronary artery disease.
        Circulation. 1981; 64: 1116-1124
        • Ehsani A.A.
        • Biello D.
        • Seals D.R.
        • Austin M.B.
        • Schultz J.
        The effect of left ventricular systolic function on maximal aerobic exercise capacity in asymptomatic patients with coronary artery disease.
        Circulation. 1984; 70: 552-560
        • Kopitsky R.G.
        • Switzer M.E.
        • Williams R.S.
        • McKee P.A.
        The basis for the increase in factor VIII procoagulant activity during exercise.
        Thromb Haemost. 1983; 49: 53-57
        • Williams R.S.
        • Logue E.E.
        • Lewis J.G.
        • et al.
        Physical conditioning augments the fibrinolytic response to venous occlusion in healthy adults.
        N Engl J Med. 1980; 302: 987-991
        • Vuori I.M.
        • Lavie C.J.
        • Blair S.N.
        Physical activity promotion in the health care system.
        Mayo Clin Proc. 2013; 88: 1446-1461
        • Swift D.L.
        • Lavie C.J.
        • Johannsen N.M.
        • et al.
        Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention.
        Circ J. 2013; 77: 281-292
        • Gupta S.
        • Rohatgi A.
        • Ayers C.R.
        • et al.
        Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality: clinical perspective.
        Circulation. 2011; 123: 1377-1383
        • Goff D.C.
        • Lloyd-Jones D.M.
        • Bennett G.
        • et al.
        2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [published correction appears in J Am Coll Cardiol. 2014;63(25 Pt B):3026].
        J Am Coll Cardiol. 2014; 63: 2935-2959
        • Myers J.
        New American Heart Association/American College of Cardiology guidelines on cardiovascular risk: when will fitness get the recognition it deserves?.
        Mayo Clin Proc. 2014; 89: 722-726
      1. Sui X. Longitudinal Analyses of Physical Activity and Cardiorespiratory Fitness on Adiposity and Glucose Levels. ProQuest Dissertations and Theses. 2012;126.