Mayo Clinic Proceedings Home

Wound Healing: A Paradigm for Regeneration

      Abstract

      Human skin is a remarkably plastic organ that sustains insult and injury throughout life. Its ability to expeditiously repair wounds is paramount to survival and is thought to be regulated by wound components such as differentiated cells, stem cells, cytokine networks, extracellular matrix, and mechanical forces. These intrinsic regenerative pathways are integrated across different skin compartments and are being elucidated on the cellular and molecular levels. Recent advances in bioengineering and nanotechnology have allowed researchers to manipulate these microenvironments in increasingly precise spatial and temporal scales, recapitulating key homeostatic cues that may drive regeneration. The ultimate goal is to translate these bench achievements into viable bedside therapies that address the growing global burden of acute and chronic wounds. In this review, we highlight current concepts in cutaneous wound repair and propose that many of these evolving paradigms may underlie regenerative processes across diverse organ systems.

      Abbreviations and Acronyms:

      ADSC ( adipose-derived stem cell), ECM ( extracellular matrix), MMP ( matrix metalloproteinase), TGF ( transforming growth factor)
      To read this article in full you will need to make a payment

      References

        • Gurtner G.C.
        • Werner S.
        • Barrandon Y.
        • Longaker M.T.
        Wound repair and regeneration.
        Nature. 2008; 453: 314-321
        • Singer A.J.
        • Clark R.A.
        Cutaneous wound healing.
        N Engl J Med. 1999; 341: 738-746
        • Yang L.
        • Peng R.
        Unveiling hair follicle stem cells.
        Stem Cell Rev. 2010; 6: 658-664
        • Blanpain C.
        • Fuchs E.
        Epidermal stem cells of the skin.
        Annu Rev Cell Dev Biol. 2006; 22: 339-373
        • Cha J.
        • Falanga V.
        Stem cells in cutaneous wound healing.
        Clin Dermatol. 2007; 25: 73-78
        • Ito M.
        • Liu Y.
        • Yang Z.
        • et al.
        Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis.
        Nat Med. 2005; 11: 1351-1354
        • Morasso M.I.
        • Tomic-Canic M.
        Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing.
        Biol Cell. 2005; 97: 173-183
        • Schultz G.S.
        • Davidson J.M.
        • Kirsner R.S.
        • Bornstein P.
        • Herman I.M.
        Dynamic reciprocity in the wound microenvironment.
        Wound Repair Regen. 2011; 19: 134-148
        • Wong V.W.
        • Akaishi S.
        • Longaker M.T.
        • Gurtner G.C.
        Pushing back: wound mechanotransduction in repair and regeneration.
        J Invest Dermatol. 2011; 131: 2186-2196
        • Fuchs E.
        Skin stem cells: rising to the surface.
        J Cell Biol. 2008; 180: 273-284
        • Fuchs E.
        • Nowak J.A.
        Building epithelial tissues from skin stem cells.
        Cold Spring Harb Symp Quant Biol. 2008; 73: 333-350
        • Larson B.J.
        • Longaker M.T.
        • Lorenz H.P.
        Scarless fetal wound healing: a basic science review.
        Plast Reconstr Surg. 2010; 126: 1172-1180
        • Bullard K.M.
        • Longaker M.T.
        • Lorenz H.P.
        Fetal wound healing: current biology.
        World J Surg. 2003; 27: 54-61
        • Colwell A.S.
        • Longaker M.T.
        • Lorenz H.P.
        Fetal wound healing.
        Front Biosci. 2003; 8: s1240-s1248
        • Wilgus T.A.
        Regenerative healing in fetal skin: a review of the literature.
        Ostomy Wound Manage. 2007; 53: 16-31
        • Mascre G.
        • Dekoninck S.
        • Drogat B.
        • et al.
        Distinct contribution of stem and progenitor cells to epidermal maintenance.
        Nature. 2012; 489: 257-262
        • Wong V.W.
        • Levi B.
        • Rajadas J.
        • Longaker M.T.
        • Gurtner G.C.
        Stem cell niches for skin regeneration.
        Int J Biomater. 2012; 2012: 926059
        • Glotzbach J.P.
        • Wong V.W.
        • Gurtner G.C.
        • Longaker M.T.
        Regenerative medicine.
        Curr Probl Surg. 2011; 48: 148-212
        • Lin C.S.
        • Xin Z.C.
        • Deng C.H.
        • Ning H.
        • Lin G.
        • Lue T.F.
        Defining adipose tissue-derived stem cells in tissue and in culture.
        Histol Histopathol. 2010; 25: 807-815
        • Lin G.
        • Garcia M.
        • Ning H.
        • et al.
        Defining stem and progenitor cells within adipose tissue.
        Stem Cells Dev. 2008; 17: 1053-1063
        • Cherubino M.
        • Rubin J.P.
        • Miljkovic N.
        • Kelmendi-Doko A.
        • Marra K.G.
        Adipose-derived stem cells for wound healing applications.
        Ann Plast Surg. 2011; 66: 210-215
        • Hyun J.S.
        • Chung M.T.
        • Wong V.W.
        • Montoro D.
        • Longaker M.T.
        • Wan D.C.
        Rethinking the blastema.
        Plast Reconstr Surg. 2012; 129: 1097-1103
        • Rinkevich Y.
        • Lindau P.
        • Ueno H.
        • Longaker M.T.
        • Weissman I.L.
        Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip.
        Nature. 2011; 476: 409-413
        • Fuchs E.
        Finding one's niche in the skin.
        Cell Stem Cell. 2009; 4: 499-502
        • Li L.
        • Xie T.
        Stem cell niche: structure and function.
        Ann Rev Cell Dev Biol. 2005; 21: 605-631
        • Scadden D.T.
        The stem-cell niche as an entity of action.
        Nature. 2006; 441: 1075-1079
        • Voog J.
        • Jones D.L.
        Stem cells and the niche: a dynamic duo.
        Cell Stem Cell. 2010; 6: 103-115
        • Jamora C.
        • DasGupta R.
        • Kocieniewski P.
        • Fuchs E.
        Links between signal transduction, transcription and adhesion in epithelial bud development.
        Nature. 2003; 422: 317-322
        • Marthiens V.
        • Kazanis I.
        • Moss L.
        • Long K.
        • Ffrench-Constant C.
        Adhesion molecules in the stem cell niche–more than just staying in shape?.
        J Cell Sci. 2010; 123: 1613-1622
        • Plikus M.V.
        • Mayer J.A.
        • de la Cruz D.
        • et al.
        Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.
        Nature. 2008; 451: 340-344
        • Hsu Y.C.
        • Pasolli H.A.
        • Fuchs E.
        Dynamics between stem cells, niche, and progeny in the hair follicle.
        Cell. 2011; 144: 92-105
        • Kellner J.C.
        • Coulombe P.A.
        SKPing a hurdle: Sox2 and adult dermal stem cells.
        Cell Stem Cell. 2009; 5: 569-570
        • Biernaskie J.
        • Paris M.
        • Morozova O.
        • et al.
        SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.
        Cell Stem Cell. 2009; 5: 610-623
        • Driskell R.R.
        • Clavel C.
        • Rendl M.
        • Watt F.M.
        Hair follicle dermal papilla cells at a glance.
        J Cell Sci. 2011; 124: 1179-1182
        • Lozito T.P.
        • Tuan R.S.
        Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs.
        J Cell Physiol. 2011; 226: 385-396
        • Huang H.I.
        • Chen S.K.
        • Ling Q.D.
        • Chien C.C.
        • Liu H.T.
        • Chan S.H.
        Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin.
        Tissue Eng Part A. 2010; 16: 1491-1501
        • Lorenz K.
        • Sicker M.
        • Schmelzer E.
        • et al.
        Multilineage differentiation potential of human dermal skin-derived fibroblasts.
        Exp Dermatol. 2008; 17: 925-932
        • Jeong J.H.
        Adipose stem cells and skin repair.
        Curr Stem Cell Res Ther. 2010; 5: 137-140
        • Festa E.
        • Fretz J.
        • Berry R.
        • et al.
        Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling.
        Cell. 2011; 146: 761-771
        • Traktuev D.O.
        • Prater D.N.
        • Merfeld-Clauss S.
        • et al.
        Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells.
        Circ Res. 2009; 104: 1410-1420
        • Frantz C.
        • Stewart K.M.
        • Weaver V.M.
        The extracellular matrix at a glance.
        J Cell Sci. 2010; 123: 4195-4200
        • Hynes R.O.
        The extracellular matrix: not just pretty fibrils.
        Science. 2009; 326: 1216-1219
        • Bateman J.F.
        • Boot-Handford R.P.
        • Lamande S.R.
        Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations.
        Nat Rev Genet. 2009; 10: 173-183
        • Stefater III, J.A.
        • Ren S.
        • Lang R.A.
        • Duffield J.S.
        Metchnikoff's policemen: macrophages in development, homeostasis and regeneration.
        Trends Mol Med. 2011; 17: 743-752
        • Mosser D.M.
        • Edwards J.P.
        Exploring the full spectrum of macrophage activation.
        Nat Rev Immunol. 2008; 8: 958-969
        • Glaros T.
        • Larsen M.
        • Li L.
        Macrophages and fibroblasts during inflammation, tissue damage and organ injury.
        Front Biosci. 2009; 14: 3988-3993
        • Lucas T.
        • Waisman A.
        • Ranjan R.
        • et al.
        Differential roles of macrophages in diverse phases of skin repair.
        J Immunol. 2010; 184: 3964-3977
        • Werner S.
        • Krieg T.
        • Smola H.
        Keratinocyte-fibroblast interactions in wound healing.
        J Invest Dermatol. 2007; 127: 998-1008
        • Ghahary A.
        • Ghaffari A.
        Role of keratinocyte-fibroblast cross-talk in development of hypertrophic scar.
        Wound Repair Regen. 2007; 15: S46-S53
        • Kirkpatrick N.D.
        • Andreou S.
        • Hoying J.B.
        • Utzinger U.
        Live imaging of collagen remodeling during angiogenesis.
        Am J Physiol Heart Circ Physiol. 2007; 292: H3198-H3206
        • Vorotnikova E.
        • McIntosh D.
        • Dewilde A.
        • et al.
        Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo.
        Matrix Biol. 2010; 29: 690-700
        • Gordon M.K.
        • Hahn R.A.
        Collagens.
        Cell Tissue Res. 2010; 339: 247-257
        • Rnjak J.
        • Wise S.G.
        • Mithieux S.M.
        • Weiss A.S.
        Severe burn injuries and the role of elastin in the design of dermal substitutes.
        Tissue Eng Part B Rev. 2011; 17: 81-91
        • Schaefer L.
        • Schaefer R.M.
        Proteoglycans: from structural compounds to signaling molecules.
        Cell Tissue Res. 2010; 339: 237-246
        • Bornstein P.
        • Sage E.H.
        Matricellular proteins: extracellular modulators of cell function.
        Curr Opin Cell Biol. 2002; 14: 608-616
        • Chong H.C.
        • Tan C.K.
        • Huang R.L.
        • Tan N.S.
        Matricellular proteins: a sticky affair with cancers.
        J Oncol. 2012; 2012: 351089
        • Matsui Y.
        • Morimoto J.
        • Uede T.
        Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction.
        World J Biol Chem. 2010; 1: 69-80
        • Chen C.C.
        • Lau L.F.
        Functions and mechanisms of action of CCN matricellular proteins.
        Int J Biochem Cell Biol. 2009; 41: 771-783
        • Midwood K.S.
        • Orend G.
        The role of tenascin-C in tissue injury and tumorigenesis.
        J Cell Commun Signal. 2009; 3: 287-310
        • Bornstein P.
        • Agah A.
        • Kyriakides T.R.
        The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury.
        Int J Biochem Cell Biol. 2004; 36: 1115-1125
        • Maclauchlan S.
        • Skokos E.A.
        • Agah A.
        • et al.
        Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and -9, and soluble VEGF.
        J Histochem Cytochem. 2009; 57: 301-313
        • Jun J.I.
        • Lau L.F.
        Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets.
        Nat Rev Drug Discov. 2011; 10: 945-963
        • Zhou H.M.
        • Wang J.
        • Elliott C.
        • Wen W.
        • Hamilton D.W.
        • Conway S.J.
        Spatiotemporal expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation.
        J Cell Commun Signal. 2010; 4: 99-107
        • Timpl R.
        • Sasaki T.
        • Kostka G.
        • Chu M.L.
        Fibulins: a versatile family of extracellular matrix proteins.
        Nat Rev Mol Cell Biol. 2003; 4: 479-489
        • Wong V.W.
        • Longaker M.T.
        • Gurtner G.C.
        Soft tissue mechanotransduction in wound healing and fibrosis.
        Semin Cell Dev Biol. 2012; 23: 981-986
        • Agha R.
        • Ogawa R.
        • Pietramaggiori G.
        • Orgill D.P.
        A review of the role of mechanical forces in cutaneous wound healing.
        J Surg Res. 2011; 171: 700-708
        • DuFort C.C.
        • Paszek M.J.
        • Weaver V.M.
        Balancing forces: architectural control of mechanotransduction.
        Nat Rev Mol Cell Biol. 2011; 12: 308-319
        • Wang N.
        • Tytell J.D.
        • Ingber D.E.
        Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus.
        Nat Rev Mol Cell Biol. 2009; 10: 75-82
        • Cox T.R.
        • Erler J.T.
        Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer.
        Dis Model Mech. 2011; 4: 165-178
        • Chiquet M.
        • Gelman L.
        • Lutz R.
        • Maier S.
        From mechanotransduction to extracellular matrix gene expression in fibroblasts.
        Biochim Biophys Acta. 2009; 1793: 911-920
        • Wong V.W.
        • Rustad K.C.
        • Akaishi S.
        • et al.
        Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling.
        Nat Med. 2012; 18: 148-152
        • Reichelt J.
        Mechanotransduction of keratinocytes in culture and in the epidermis.
        Eur J Cell Biol. 2007; 86: 807-816
        • Zhang H.
        • Landmann F.
        • Zahreddine H.
        • Rodriguez D.
        • Koch M.
        • Labouesse M.
        A tension-induced mechanotransduction pathway promotes epithelial morphogenesis.
        Nature. 2011; 471: 99-103
        • Wang J.H.
        • Thampatty B.P.
        Mechanobiology of adult and stem cells.
        Int Rev Cell Mol Biol. 2008; 271: 301-346
        • Orgill D.P.
        • Manders E.K.
        • Sumpio B.E.
        • et al.
        The mechanisms of action of vacuum assisted closure: more to learn.
        Surgery. 2009; 146: 40-51
        • Gurtner G.C.
        • Dauskardt R.H.
        • Wong V.W.
        • et al.
        Improving cutaneous scar by controlling the mechanical environment: large animal and phase I studies.
        Ann Surg. 2011; 254: 217-225
        • Vierbuchen T.
        • Wernig M.
        Direct lineage conversions: unnatural but useful?.
        Nat Biotechnol. 2011; 29: 892-907
        • Stadtfeld M.
        • Maherali N.
        • Breault D.T.
        • Hochedlinger K.
        Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse.
        Cell Stem Cell. 2008; 2: 230-240
        • Aasen T.
        • Raya A.
        • Barrero M.J.
        • et al.
        Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.
        Nat Biotechnol. 2008; 26: 1276-1284
        • Kalluri R.
        • Weinberg R.A.
        The basics of epithelial-mesenchymal transition.
        J Clin Invest. 2009; 119: 1420-1428
        • Nistico P.
        • Bissell M.J.
        • Radisky D.C.
        Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases.
        Cold Spring Harb Perspect Biol. 2012; 4
        • Jarvinen P.M.
        • Laiho M.
        LIM-domain proteins in transforming growth factor beta-induced epithelial-to-mesenchymal transition and myofibroblast differentiation.
        Cell Signal. 2012; 24: 819-825
        • Lin F.
        • Wang N.
        • Zhang T.C.
        The role of endothelial-mesenchymal transition in development and pathological process.
        IUBMB Life. 2012; 64: 717-723
        • Kao H.K.
        • Chen B.
        • Murphy G.F.
        • Li Q.
        • Orgill D.P.
        • Guo L.
        Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis.
        Ann Surg. 2011; 254: 1066-1074
        • Wang J.F.
        • Jiao H.
        • Stewart T.L.
        • Shankowsky H.A.
        • Scott P.G.
        • Tredget E.E.
        Fibrocytes from burn patients regulate the activities of fibroblasts.
        Wound Repair Regen. 2007; 15: 113-121
        • Wong V.W.
        • Rustad K.C.
        • Longaker M.T.
        • Gurtner G.C.
        Tissue engineering in plastic surgery: a review.
        Plast Reconstr Surg. 2010; 126: 858-868
        • Metcalfe A.D.
        • Ferguson M.W.
        Bioengineering skin using mechanisms of regeneration and repair.
        Biomaterials. 2007; 28: 5100-5113
        • Zhong S.P.
        • Zhang Y.Z.
        • Lim C.T.
        Tissue scaffolds for skin wound healing and dermal reconstruction.
        Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2: 510-525
        • Wong V.W.
        • Gurtner G.C.
        Tissue engineering for the management of chronic wounds: current concepts and future perspectives.
        Exp Dermatol. 2012; 21: 729-734
        • Badylak S.F.
        • Taylor D.
        • Uygun K.
        Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds.
        Annu Rev Biomed Eng. 2011; 13: 27-53
        • Cerqueira M.T.
        • Marques A.P.
        • Reis R.L.
        Using stem cells in skin regeneration: possibilities and reality.
        Stem Cells Dev. 2012; 21: 1201-1214
        • Atiyeh B.S.
        • Costagliola M.
        Cultured epithelial autograft (CEA) in burn treatment: three decades later.
        Burns. 2007; 33: 405-413
        • Zakine G.
        • Mimoun M.
        • Pham J.
        • Chaouat M.
        Reepithelialization from stem cells of hair follicles of dermal graft of the scalp in acute treatment of third-degree burns: first clinical and histologic study.
        Plast Reconstr Surg. 2012; 130: 42e-50e
        • Asakawa K.
        • Toyoshima K.E.
        • Ishibashi N.
        • et al.
        Hair organ regeneration via the bioengineered hair follicular unit transplantation.
        Sci Rep. 2012; 2: 424
        • Mohamed A.
        • Xing M.M.
        Nanomaterials and nanotechnology for skin tissue engineering.
        Int J Burns Trauma. 2012; 2: 29-41
        • Kim D.H.
        • Provenzano P.P.
        • Smith C.L.
        • Levchenko A.
        Matrix nanotopography as a regulator of cell function.
        J Cell Biol. 2012; 197: 351-360
        • Ghosh K.
        • Pan Z.
        • Guan E.
        • et al.
        Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties.
        Biomaterials. 2007; 28: 671-679
        • Crichton M.L.
        • Chen X.
        • Huang H.
        • Kendall M.A.
        Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales.
        Biomaterials. 2013; 34: 2087-2097
        • Werner S.
        • Grose R.
        Regulation of wound healing by growth factors and cytokines.
        Physiol Rev. 2003; 83: 835-870
        • Huang G.Y.
        • Zhou L.H.
        • Zhang Q.C.
        • et al.
        Microfluidic hydrogels for tissue engineering.
        Biofabrication. 2011; 3: 012001