Advertisement
Mayo Clinic Proceedings Home

Heart Rate Variability: Technique and Investigational Applications in Cardiovascular Medicine

  • Author Footnotes
    * Current address: Heart Health Center, St. Louis, Missouri.
    Stephen J. Pieper
    Footnotes
    * Current address: Heart Health Center, St. Louis, Missouri.
    Affiliations
    Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic Rochester, Rochester, Minnesota
    Search for articles by this author
  • Stephen C. Hammill
    Correspondence
    Address reprint requests to Dr. S. C. Hammill, Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905
    Affiliations
    Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic Rochester, Rochester, Minnesota
    Search for articles by this author
  • Author Footnotes
    * Current address: Heart Health Center, St. Louis, Missouri.

      Objective

      To describe heart rate variability (HRV) analysis, especially time- and frequencydomain analyses, and some of its investigational applications in clinical cardiovascular medicine.

      Design

      We provide a brief introduction to the magnitude of sudden cardiac death and the factors that influence life-threatening ventricular arrhythmias as a backdrop to the potential importance of the autonomic nervous system and how this system might be assessed by the analysis of HRV.

      Material and Methods

      We reviewed the literature from 1973 to 1994 that described beat-to-beat changes in heart rate, heart rate signal recording and processing, and investigational applications of HRV analysis to cardiovascular medicine.

      Results

      Beat-to-beat changes in heart rate are partly influenced by the autonomic nervous system. Briefly, changes in sympathetic input to the sinoatrial node affect low-frequency HRV, whereas changes in parasympathetic input affect high-frequency HRV. Multiple physiologic and non physiologic determinants of HRV exist, and therefore analysis of HRV as a direct “window” to autonomic tone is problematic.

      Conclusion

      In selected patient populations, analysis of HRV yields important information about sinoatrial responsiveness to autonomic input and mortality risk stratification. Routine application of HRV analysis to clinical cardiovascular medicine awaits further investigation, however.
      ACE (angiotensin-converting enzyme), CHF (congestive heart failure), ECG (electrocardiogram), FFT (fast Fourier transform), HRV (heart rate variability), NYHA (New York Heart Association)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Berger RD
        • Akselrod S
        • Gordon D
        • Cohen RJ
        An efficient algorithm for spectral analysis of heart rate variability.
        IEEE Trans Biomed Eng. 1986; 33: 900-904
        • Challis RE
        • Kitney RI
        Biomedical signal processing (in four parts). Part 1. Time-domain methods.
        Med Biol Eng Comput. 1990; 28: 509-524
        • Challis RE
        • Kitney RI
        Biomedical signal processing (in four parts). Part 2. The frequency transforms and their interrelationships.
        Med Biol Eng Comput. 1991; 29: 1-17
        • Challis RE
        • Kitney RI
        Biomedical signal processing (in four parts). Part 3. The power spectrum and coherence function.
        Med Biol Eng Comput. 1991; 29: 225-241
        • de Boer RW
        • Karemaker JM
        • Strackee J
        Spectrum of a series of point events, generated by the integral pulse frequency modulation model.
        Med Biol Eng Comput. 1985; 23: 138-142
        • Bigger Jr, JT
        • Fleiss JL
        • Steinman RC
        • Rolnitzky LM
        • Kleiger RE
        Correlations among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction.
        AmJCardiol. 1992; 69: 891-898
        • Luczak H
        • Laurig W
        An analysis of heart rate variability.
        Ergonomics. 1973; 16: 85-97
        • Pomeranz B
        • Macaulay RJ
        • Caudill MA
        • Kutz I
        • Adam D
        • Gordon D
        • et al.
        Assessment of autonomic function in humans by heart rate spectral analysis.
        Am J Physiol. 1985; 248: H151-H153
        • van Ravenswaaij-Arts CM
        • Kollee LA
        • Hopman JC
        • Stoellnga GB
        • van Geijn HP
        Heart rate variability.
        Ann Intern Med. 1993; 118: 436-447
        • Parati G
        • Castiglioni P
        • Di Rienzo M
        • Omboni S
        • Pedotti A
        • Mancia G
        Sequential spectral analysis of 24-hour blood pressure and pulse interval in humans.
        Hypertension. 1990; 16: 414-421
        • Saul JP
        • Kaplan DT
        • Kitney RI
        Nonlinear interactions between respiration and heart rate: classical physiology or entrained nonlinear optilators.
        IEEE Trans Biomed Eng. 1989; 29: 299-302
        • Triedman JK
        • Saul JP
        Blood pressure modulation by central venous pressure in respiration: buffering effects of the heart rate reflexes.
        Circulation. 1994; 89: 169-179
        • Glass L
        • Kaplan D
        Time series analysis of complex dynamics in physiology and medicine.
        Med Prog Technol. 1993; 19: 115-128
        • Kaplan DT
        • Talagic M
        Dynamics of heart rate.
        Chaos. 1991; 3: 251-256
        • Bigger Jr, JT
        • Albrecht P
        • Steinman RC
        • Rolnitzky LM
        • Fleiss JL
        • Cohen RJ
        Comparison of time- and frequency domain-based measures of cardiac parasympathetic activity in Holter recordings after myocardial infarction.
        Am J Cardiol. 1989; 64: 536-538
        • Akselrod S
        • Gordon D
        • Ubel FA
        • Shannon DC
        • Berger AC
        • Cohen RJ
        Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control.
        Science. 1981; 213: 220-222
        • Eckberg DL
        Human sinus arrhythmia as an index of vagal cardiac outflow.
        J Appl Physiol. 1983; 54: 961-966
        • Hirsch JA
        • Bishop B
        Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate.
        Am J Physiol. 1981; 241: H620-H629
        • Albrecht P
        • Cohen RJ
        Estimation of heart rate power spectrum bands from real world data: dealing with ectopic beats and noisy data.
        Comput Cardiol. 1988; 15: 311-314
        • Malliani A
        • Pagani M
        • Lombardi F
        • Cerutti S
        Cardiovascular neural regulation explored in the frequency domain.
        Circulation. 1991; 84: 482-492
        • Murakawa Y
        • Ajiki K
        • Usui M
        • Yamashita T
        • Oikawa N
        • Inoue H
        Parasympathetic activity is a major modulator of the circadian variability of heart rate in healthy subjects and in patients with coronary artery disease or diabetes mellitus.
        AmHeartJ. 1993; 126: 108-114
        • Sands KE
        • Appel ML
        • Lilly LS
        • Schoen FJ
        • Mudge Jr, GH
        • Cohen RJ
        Power spectrum analysis of heart rate variability in human cardiac transplant recipients.
        Circulation. 1989; 79: 76-82
        • Leffler CT
        • Saul JP
        • Cohen RJ
        Rate-related and autonomic effects on atrioventricular conduction assessed through beat-to-beat PR interval and cycle length variability.
        J Cardiovasc Electrophysiol. 1994; 5: 2-15
        • Kleiger RE
        • Miller JP
        • Bigger Jr, JT
        • Moss AJ
        • Multicenter Post-Infarction Research Group
        Decreased heart rate variability and its association with increased mortality after acute myocardial infarction.
        Am J Cardiol. 1987; 59: 256-262
        • Malik M
        • Cripps T
        • Farrell T
        • Camm AJ
        Prognostic value of heart rate variability after myocardial infarction: a comparison of different data-processing methods.
        Med Biol Eng Comput. 1989; 27: 603-611
        • Malik M
        • Farrell T
        • Camm AJ
        Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability.
        Am J Cardiol. 1990; 66: 1049-1054
        • Malik M
        • Farrell T
        • Cripps T
        • Camm AJ
        Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques.
        Eur Heart J. 1989; 10: 1060-1074
        • Wolf MM
        • Varigos GA
        • Hunt D
        • Sloman JG
        Sinus arrhythmia in acute myocardial infarction.
        Med J Aust. 1978; 2: 52-53
        • Farrell TG
        • Bashir Y
        • Cripps T
        • Malik M
        • Poloniecki J
        • Bennett ED
        • et al.
        Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and signal-averaged electrocardiogram.
        J Am Coll Cardiol. 1991; 18: 687-697
        • Bigger Jr, JT
        • Fleiss JL
        • Steinman RC
        • Rolnitzky LM
        • Kleiger RE
        Frequency domain measures of heart period variability and mortality after myocardial infarction.
        Circulation. 1992; 85: 164-171
        • Bigger JT
        • Kleiger RE
        • Fleiss JL
        • Rolnitzky LM
        • Steinman RC
        • Miller JP
        Components of heart rate variability measured during healing of acute myocardial infarction.
        Am J Cardiol. 1988; 61: 208-215
        • Bigger Jr, JT
        • Fleiss JL
        • Rolnitzky LM
        • Steinman RC
        Stability over time of heart period variability in patients with previous myocardial infarction and ventricular arrhythmias.
        Am J Cardiol. 1992; 69: 718-723
        • Bigger Jr, JT
        • Fleiss JL
        • Rolnitzky LM
        • Steinman RC
        • Schneider WJ
        Time course of recovery of heart period variability after myocardial infarction.
        J Am Coll Cardiol. 1991; 18: 1643-1649
        • Binkley PF
        • Nunziata E
        • Haas GJ
        • Nelson SD
        • Cody RJ
        Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure.
        J Am Coll Cardiol. 1991; 18: 464-472
        • Casolo G
        • Balli E
        • Fazi A
        • Gori C
        • Freni A
        • Gensini G
        Twenty-four-hour spectral analysis of heart rate variability in congestive heart failure secondary to coronary artery disease.
        Am J Cardiol. 1991; 67: 1154-1158
        • Saul JP
        Heart rate variability during congestive heart failure: observations and implications.
        in: di Rienzo M Blood Pressure and Heart Rate Variability. IOS Press, Amsterdam1993: 266-275
        • Saul JP
        • Arai Y
        • Berger RD
        • Lilly LS
        • Colucci WS
        • Cohen RJ
        Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis.
        Am J Cardiol. 1988; 61: 1292-1299
        • Adamopoulos S
        • Piepoli M
        • McCance A
        • Bernardi L
        • Rocadaelli A
        • Ormerod O
        • et al.
        Comparison of different methods for assessing sympathovagal balance in chronic congestive heart failure secondary to coronary artery disease.
        Am J Cardiol. 1992; 70: 1576-1582
        • Ajiki K
        • Murakawa Y
        • Yanagisawa-Miwa A
        • Usui M
        • Yamashita T
        • Oikawa N
        • et al.
        Autonomic nervous system activity in idiopathic dilated cardiomyopathy and in hyper-trophic cardiomyopafhy.
        Am J Cardiol. 1993; 71: 1316-1320
        • Kienzle MG
        • Ferguson DW
        • Birkett CL
        • Myers GA
        • Berg WJ
        • Mariano DJ
        Clinical, hemodynamic and sympathetic neural correlates of heart rate variability in congestive heart failure.
        Am J Cardiol. 1992; 69: 761-767
        • Lombardi F
        • Sandrone G
        • Pernpruner S
        • Sala R
        • Garimoldi M
        • Cerutti S
        • et al.
        Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction.
        Am J Cardiol. 1987; 60: 1239-1245
        • Binkley PF
        • Haas GJ
        • Starling RC
        • Nunziata E
        • Hatton PA
        • Leier CV
        • et al.
        Sustained augmentation of parasympathetic tone with angiotensin-converting enzyme inhibition in patients with congestive heart failure.
        J Am Coll Cardiol. 1993; 21: 655-661
        • Binkley PF
        • Nunziata E
        • Cody RJ
        Digoxin mediated reduction of sympathetic tone contributes to vasodilation in dilated cardiomyopafhy [abstract].
        Circulation. 1990; 82: III-316
        • Casadei B
        • Pipilis A
        • Sessa F
        • Conway J
        • Sleight P
        Low doses of scopolamine increase cardiac vagal tone in the acute phase of myocardial infarction.
        Circulation. 1993; 88: 353-357
        • Coumel P
        • Hermida JS
        • Wennerblom B
        • Leenhardt A
        • Maison-Blanche P
        Heart rate variability in left ventricular hypertrophy and heart failure, and the effects of beta-blockade: a non-spectral analysis of heart rate variability in the frequency domain and in the time domain.
        Eur Heart J. 1991; 12: 412-422
        • Kaufman EF
        • Bosner MS
        • Bigger Jr, JT
        • Stein PK
        • Kleiger RE
        • Rolnitzky LM
        • et al.
        Effects of digoxin and enalapril on heart period variability and response to head-up tilt in normal subjects.
        Am J Cardiol. 1993; 72: 95-99
        • Kluger J
        • Cody RJ
        • Laragh JH
        The contributions of sympathetic tone and the renin-angiotensin system to severe chronic congestive heart failure: response to specific inhibitors (prazosin and captopril).
        Am J Cardiol. 1982; 49: 1667-1674
        • Lombardi F
        • Torzillo D
        • Sandrone G
        • Dalla Vecchia L
        • Finocchiaro ML
        • Bernasconi R
        • et al.
        Beta-blocking effect of propafenone based on spectral analysis of heart rate variability.
        Am J Cardiol. 1992; 70: 1028-1034
        • Zuanetti G
        • Latini R
        • Neilson JM
        • Schwartz PJ
        • Ewing DJ
        Heart rate variability in patients with ventricular arrhythmias: effect of antiarrhyfhmic drugs.
        J Am Coll Cardiol. 1991; 17: 604-612
        • Chess GF
        • Tarn RMK
        • Calaresu FR
        Influence of cardiac neural inputs on rhythmic variations of heart period in the cat.
        Am J Physiol. 1975; 228: 775-780
        • Lindpaintner K
        • Ganten D
        The cardiac renin-angiotensin system: an appraisal of present experimental and clinical evidence.
        Circ Res. 1991; 68: 905-921
        • Saul JP
        • Rea RF
        • Eckberg DL
        • Berger RD
        • Cohen RJ
        Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity.
        Am J Physiol. 1990; 258: H713-H721
        • Lee WB
        • Ismay MJ
        • Lumbers ER
        Mechanisms by which angiotensin II affects the heart rate of the conscious sheep.
        Circ Res. 1980; 47: 286-292
        • Lumbers ER
        • McCloskey DI
        • Potter EK
        Inhibition by angiotensin II of baroreceptor-evoked activity in cardiac vagal efferent nerves in the dog.
        J Physiol. 1979; 294: 69-80
        • Vybiral T
        • Bryg RJ
        • Maddens ME
        • Boden WE
        Effect of passive tilt on sympathetic and parasympathetic components of heart rate variability in normal subjects.
        Am J Cardiol. 1989; 63: 1117-1120
        • Lipsitz LA
        • Mietus J
        • Moody GB
        • Goldberger AL
        Spectral characteristics of heart rate variability before and during postural tilt: relations to aging and risk of syncope.
        Circulation. 1990; 81: 1803-1810
        • Algra A
        • Tijssen JG
        • Roelandt JR
        • Pool J
        • Lubsen J
        Heart rate variability from 24-hour electrocardiography and the 2-year risk for sudden death.
        Circulation. 1993; 88: 180-185
        • Huikuri HV
        • Valkama JO
        • Airaksinen KE
        • Seppanen T
        • Kessler KM
        • Takkunen JT
        • et al.
        Frequency domain measures of heart rate variability before the onset of nonsustained and sustained ventricular tachycardia in patients with coronary artery disease.
        Circulation. 1993; 87: 1220-1228
        • Stein KM
        • Borer JS
        • Hochreiter C
        • Okin PM
        • Herrold EM
        • Devereux RB
        • et al.
        Prognostic value and physiological correlates of heart rate variability in chronic severe mitral regurgitation.
        Circulation. 1993; 88: 127-135
        • Vybiral T
        • Glaeser DH
        • Goldberger AL
        • Rigney DR
        • Hess KR
        • Mietus J
        • et al.
        Conventional heart rate variability analysis of ambulatory electrocardiographic recordings fails to predict imminent ventricular fibrillation.
        J Am Coll Cardiol. 1993; 22: 557-565