Advertisement
Mayo Clinic Proceedings Home

Genetic Testing in the Myelodysplastic Syndromes: Molecular Insights Into Hematologic Diversity

      The myelodysplastic syndromes (MDS) are associated with a diverse set of acquired somatic genetic abnormalities. Bone marrow karyotyping provides important diagnostic and prognostic information and should be attempted in all patients who are suspected of having MDS. Fluorescent in situ hybridization (FISH) studies on blood or marrow may also be valuable in selected cases, such as patients who may have 5q- syndrome or those who have undergone hematopoietic stem cell transplantation. The MDS-associated cytogenetic abnormalities that have been defined by karyotyping and FISH studies have already contributed substantially to our current understanding of the biology of malignant myeloid disorders, but the pathobiological meaning of common, recurrent chromosomal lesions such as del(5q), del(20q), and monosomy 7 is still unknown. The great diversity of the cytogenetic findings described in MDS highlights the molecular heterogeneity of this cluster of diseases. We review the common and pathophysiologically interesting genetic abnormalities associated with MDS, focusing on the clinical utility of conventional cytogenetic assays and selected FISH studies. In addition, we discuss a series of well-defined MDS-associated point mutations and outline the potential for further insights from newer techniques such as global gene expression profiling and array-based comparative genomic hybridization.
      AA (all normal), AML (acute myeloid leukemia), AN (abnormal-normal), APL (acute promyelocytic leukemia), CDR (commonly deleted region), CGH (comparative genomic hybridization), CML (chronic myeloid leukemia), CMML (chronic myelomonocytic leukemia), CMML-Eos (CMML with eosinophilia), FAB (French-American-British), FISH (fluorescent in situ hybridization), gDNA (genomic DNA), GTPase (guanosine triphosphate hydrolases), IPSS (International Prognostic Scoring System), MDS (myelodysplastic syndromes), M-FISH (multicolor FISH), PDGFR-β (β subunit of the platelet-derived growth factor receptor), SKY (spectral karyotyping), WHO (World Health Organization)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Mayo Clinic Proceedings
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Steensma DP
        • Tefferi A
        The myelodysplastic syndrome(s): a perspective and review highlighting current controversies [published correction appears in Leuk Res. 2005;29:117].
        Leuk Res. 2003; 27: 95-120
        • Heaney ML
        • Golde DW
        Myelodysplasia.
        N Engl J Med. 1999; 340: 1649-1660
        • Ohyashiki JH
        • Ohyashiki K
        • Aizawa S
        • et al.
        Replication errors in hematological neoplasias: genomic instability in progression of disease is different among different types of leukemia.
        Clin Cancer Res. 1996; 2: 1583-1589
        • Sieber OM
        • Heinimann K
        • Tomlinson IP
        Genomic instability—the engine of tumorigenesis?.
        Nat Rev Cancer. 2003; 3: 701-708
        • Hasle H
        • Niemeyer CM
        • Chessells JM
        • et al.
        A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases.
        Leukemia. 2003; 17: 277-282
        • Bennett JM
        • Catovsky D
        • Daniel MT
        • et al.
        Proposals for the classification of the myelodysplastic syndromes.
        Br J Haematol. 1982; 51: 189-199
        • Vardiman JW
        • Harris NL
        • Brunning RD
        The World Health Organization (WHO) classification of the myeloid neoplasms.
        Blood. 2002; 100: 2292-2302
        • Harris NL
        • Jaffe ES
        • Diebold J
        • et al.
        World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997.
        J Clin Oncol. 1999; 17: 3835-3849
      1. List AF, Molldrem J, Sanders JE. Prognosis and treatment of myelodysplastic syndromes. Presented at: American Society of Clinical Oncology Annual Meeting; New Orleans, La; June 7 and 8, 2004.

        • Hellstrom-Lindberg E
        Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies.
        Br J Haematol. 1995; 89: 67-71
        • Hellström-Lindberg E
        • Gulbrandsen N
        • Lindberg G
        • Scandinavian MDS Group
        • et al.
        A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life.
        Br J Haematol. 2003; 120: 1037-1046
        • Silverman LR
        • Demakos EP
        • Peterson BL
        • et al.
        Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B.
        J Clin Oncol. 2002; 20: 2429-2440
        • Raza A
        • Meyer P
        • Dutt D
        • et al.
        Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes.
        Blood. 2001; 98: 958-965
        • Molldrem JJ
        • Leifer E
        • Bahceci E
        • et al.
        Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes.
        Ann Intern Med. 2002; 137: 156-163
        • Steensma DP
        • Dispenzieri A
        • Moore SB
        • Schroeder G
        • Tefferi A
        Antithymocyte globulin has limited efficacy and substantial toxicity in unselected anemic patients with myelodysplastic syndrome.
        Blood. 2003; 101: 2156-2158
        • Saunthararajah Y
        • Nakamura R
        • Wesley R
        • Wang QJ
        • Barrett AJ
        A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome.
        Blood. 2003; 102: 3025-3027
        • Chan G
        • DiVenuti G
        • Miller K
        Danazol for the treatment of thrombocytopenia in patients with myelodysplastic syndrome.
        Am J Hematol. 2002; 71: 166-171
        • Takeda Y
        • Sawada H
        • Sawai H
        • et al.
        Acquired hypochromic and microcytic sideroblastic anaemia responsive to pyridoxine with low value of free erythrocyte protoporphyrin: a possible subgroup of idiopathic acquired sideroblastic anaemia (IASA).
        Br J Haematol. 1995; 90: 207-209
        • Oosterveld M
        • Wittebol SH
        • Lemmens WA
        • et al.
        The impact of intensive antileukaemic treatment strategies on prognosis of myelodysplastic syndrome patients aged less than 61 years according to International Prognostic Scoring System risk groups.
        Br J Haematol. 2003; 123: 81-89
        • Anderson JE
        Bone marrow transplantation for myelodysplasia.
        Blood Rev. 2000; 14: 63-77
        • De Witte T
        • Van Biezen A
        • Hermans J
        • Chronic and Acute Leukemia Working Parties of the European Group for Blood and Marrow Transplantation
        • et al.
        Autologous bone marrow transplantation for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia following MDS.
        Blood. 1997; 90: 3853-3857
        • Ho AY
        • Pagliuca A
        • Kenyon M
        • et al.
        Reduced-intensity allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome and acute myeloid leukemia with multilineage dysplasia using fludarabine, busulphan, and alemtuzumab (FBC) conditioning.
        Blood. 2004; 104: 1616-1623
        • Cutler CS
        • Lee SJ
        • Greenberg P
        • et al.
        A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome.
        Blood. 2004; 104: 579-585
      2. List AF, Kurtin S, Glinsmann-Gibson B, et al. Efficacy and safety of CC5013 for treatment of anemia in patients with myelodysplastic syndromes (MDS) [abstract]. In: Program and abstracts of the American Society of Hematology 45th Annual Meeting; San Diego, Calif; December 6-9, 2003. Abstract 641.

        • Wijermans P
        • Lubbert M
        • Verhoef G
        • et al.
        Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients.
        J Clin Oncol. 2000; 18: 956-962
        • Tefferi A
        • Dewald GW
        • Litzow ML
        • et al.
        Chronic myeloid leukemia: current application of cytogenetics and molecular testing for diagnosis and treatment.
        Mayo Clin Proc. 2005; 80: 390-402
        • Spurbeck JL
        • Adams SA
        • Stupca PJ
        • Dewald GW
        Primer on medical genomics, part XI: visualizing human chromosomes.
        Mayo Clin Proc. 2004; 79: 58-75
        • Pierre RV
        • Catovsky D
        • Mufti GJ
        • et al.
        Clinical-cytogenetic correlations in myelodysplasia (preleukemia).
        Cancer Genet Cytogenet. 1989; 40: 149-161
        • Greenberg P
        • Cox C
        • LeBeau MM
        • et al.
        International scoring system for evaluating prognosis in myelodysplastic syndromes [published correction appears in Blood. 1998;91:1100].
        Blood. 1997; 89: 2079-2088
        • Pfeilstocker M
        • Reisner R
        • Nosslinger T
        • et al.
        Cross-validation of prognostic scores in myelodysplastic syndromes on 386 patients from a single institution confirms importance of cytogenetics.
        Br J Haematol. 1999; 106: 455-463
        • Sole F
        • Espinet B
        • Sanz GF
        • Grupo Cooperativo Espanol de Citogenetica Hematologica
        • et al.
        Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes.
        Br J Haematol. 2000; 108: 346-356
        • United Kingdom Cancer Cytogenetics Group (UKCCG)
        Loss of the Y chromosome from normal and neoplastic bone marrows [published correction appears in Genes Chromosomes Cancer. 1992;5:411].
        Genes Chromosomes Cancer. 1992; 5: 83-88
        • Nevill TJ
        • Fung HC
        • Shepherd JD
        • et al.
        Cytogenetic abnormalities in primary myelodysplastic syndrome are highly predictive of outcome after allogeneic bone marrow transplantation.
        Blood. 1998; 92: 1910-1917
        • de Souza Fernandez T
        • Ornellas MH
        • Otero de Carvalho L
        • Tabak D
        • Abdelhay E
        Chromosomal alterations associated with evolution from myelodysplastic syndrome to acute myeloid leukemia.
        Leuk Res. 2000; 24: 839-848
        • Jotterand M
        • Parlier V
        Diagnostic and prognostic significance of cytogenetics in adult primary myelodysplastic syndromes.
        Leuk Lymphoma. 1996; 23: 253-266
        • Smith SM
        • Le Beau MM
        • Huo D
        • et al.
        Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series.
        Blood. 2003; 102: 43-52
        • Billstrom R
        • Nilsson PG
        • Mitelman F
        Cytogenetic analysis in 941 consecutive patients with haematologic disorders.
        Scand J Haematol. 1986; 37: 29-40
        • Perkins D
        • Brennan S
        • Carstairs K
        • et al.
        Regional cancer cytogenetics: a report on 1,143 diagnostic cases.
        Cancer Genet Cytogenet. 1997; 96: 64-80
        • Heim S
        Cytogenetic findings in primary and secondary MDS.
        Leuk Res. 1992; 16: 43-46
        • Bloomfield CD
        • Archer KJ
        • Mrozek K
        • et al.
        11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop.
        Genes Chromosomes Cancer. 2002; 33: 362-378
        • Rubin CM
        • Larson RA
        • Anastasi J
        • et al.
        t(3;21)(q26;q22): a recurring chromosomal abnormality in therapy-related myelodysplastic syndrome and acute myeloid leukemia.
        Blood. 1990; 76: 2594-2598
        • Jotterand Bellomo M
        • Parlier V
        • Muhlematter D
        • Grob JP
        • Beris P
        Three new cases of chromosome 3 rearrangement in bands q21 and q26 with abnormal thrombopoiesis bring further evidence to the existence of a 3q21q26 syndrome.
        Cancer Genet Cytogenet. 1992; 59: 138-160
        • Rowley JD
        • Olney HJ
        International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report.
        Genes Chromosomes Cancer. 2002; 33: 331-345
        • Olney HJ
        • Mitelman F
        • Johansson B
        • Mrozek K
        • Berger R
        • Rowley JD
        Unique balanced chromosome abnormalities in treatment-related myelodysplastic syndromes and acute myeloid leukemia: report from an international workshop.
        Genes Chromosomes Cancer. 2002; 33: 413-423
        • Block AW
        • Carroll AJ
        • Hagemeijer A
        • et al.
        Rare recurring balanced chromosome abnormalities in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop.
        Genes Chromosomes Cancer. 2002; 33: 401-412
        • Collado R
        • Badia L
        • Garcia S
        • Sanchez H
        • Prieto F
        • Carbonell F
        Chromosome 11 abnormalities in myelodysplastic syndromes.
        Cancer Genet Cytogenet. 1999; 114: 58-61
        • Heller A
        • Loncarevic IF
        • Glaser M
        • et al.
        Breakpoint differentiation in chromosomal aberrations of hematological malignancies: identification of 33 previously unrecorded breakpoints.
        Int J Oncol. 2004; 24: 127-136
        • Han JY
        • Kim KH
        • Kwon HC
        • Kim JS
        • Kim HJ
        • Lee YH
        Unrelated clonal chromosome abnormalities in myelodysplastic syndromes and acute myeloid leukemias.
        Cancer Genet Cytogenet. 2002; 132: 156-158
        • Furuya T
        • Morgan R
        • Sandberg AA
        Cytogenetic biclonality in malignant hematologic disorders.
        Cancer Genet Cytogenet. 1992; 62: 25-28
        • Degos L
        The history of acute promyelocytic leukaemia.
        Br J Haematol. 2003; 122: 539-553
        • Fenaux P
        Chromosome and molecular abnormalities in myelodysplastic syndromes.
        Int J Hematol. 2001; 73: 429-437
        • Narayanan MN
        • Geary CG
        • Harrison CJ
        • Cinkotai KI
        • Lewis MJ
        Three cases of the myelodysplastic syndrome with pericentric inversion of chromosome 16.
        Br J Haematol. 1993; 85: 217-219
        • Xue Y
        • Yu F
        • Zhou Z
        • Guo Y
        • Xie X
        • Lin B
        Translocation (8;21) in oligoblastic leukemia: is this a true myelodysplastic syndrome?.
        Leuk Res. 1994; 18: 761-765
        • Steensma DP
        • Dewald GW
        • Hodnefield JM
        • Tefferi A
        • Hanson CA
        Clonal cytogenetic abnormalities in bone marrow specimens without clear morphologic evidence of dysplasia: a form fruste of myelodysplasia?.
        Leuk Res. 2003; 27: 235-242
        • Druker BJ
        • Talpaz M
        • Resta DJ
        • et al.
        Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.
        N Engl J Med. 2001; 344: 1031-1037
        • O'Dwyer ME
        • Mauro MJ
        • Blasdel C
        • et al.
        Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate.
        Blood. 2004; 103: 451-455
        • Kantarjian HM
        • O'Brien S
        • Cortes JE
        • et al.
        Complete cytogenetic and molecular responses to interferon-alpha-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis.
        Cancer. 2003; 97: 1033-1041
        • Cheson BD
        • Bennett JM
        • Kantarjian H
        • et al.
        Report of an international working group to standardize response criteria for myelodysplastic syndromes.
        Blood. 2000; 96: 3671-3674
        • Lubbert M
        • Wijermans P
        • Kunzmann R
        • et al.
        Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine.
        Br J Haematol. 2001; 114: 349-357
        • Van den Berghe H
        • Michaux L
        5q-, twenty-five years later: a synopsis.
        Cancer Genet Cytogenet. 1997; 94: 1-7
        • Van den Berghe H
        • Cassiman JJ
        • David G
        • Fryns JP
        • Michaux JL
        • Sokal G
        Distinct haematological disorder with deletion of long arm of no. 5 chromosome.
        Nature. 1974; 251: 437-438
        • Boultwood J
        • Lewis S
        • Wainscoat JS
        The 5q- syndrome.
        Blood. 1994; 84: 3253-3260
        • Sole F
        • Torrabadella M
        • Granada I
        • et al.
        Isochromosome 17q as a sole anomaly: a distinct myelodysplastic syndrome entity?.
        Leuk Res. 1993; 17: 717-720
        • Dierlamm J
        • Michaux L
        • Criel A
        • et al.
        Isodicentric (X)(q13) in haematological malignancies: presentation of five new cases, application of fluorescence in situ hybridization (FISH) and review of the literature.
        Br J Haematol. 1995; 91: 885-891
        • Pedersen B
        MDS and AML with trisomy 8 as the sole chromosome aberration show different sex ratios and prognostic profiles: a study of 115 published cases.
        Am J Hematol. 1997; 56: 224-229
        • Kimura S
        • Kuroda J
        • Akaogi T
        • Hayashi H
        • Kobayashi Y
        • Kondo M
        Trisomy 8 involved in myelodysplastic syndromes as a risk factor for intestinal ulcers and thrombosis—Behcet's syndrome.
        Leuk Lymphoma. 2001; 42: 115-121
        • Ogawa H
        • Kuroda T
        • Inada M
        • et al.
        Intestinal Behcet's disease associated with myelodysplastic syndrome with chromosomal trisomy 8—a report of two cases and a review of the literature.
        Hepatogastroenterology. 2001; 48: 416-420
        • Jenkins RB
        • Tefferi A
        • Solberg Jr, LA
        • Dewald GW
        Acute leukemia with abnormal thrombopoiesis and inversions of chromosome 3.
        Cancer Genet Cytogenet. 1989; 39: 167-179
        • Boultwood J
        • Fidler C
        • Soularue P
        • et al.
        Novel genes mapping to the critical region of the 5q- syndrome.
        Genomics. 1997; 45: 88-96
        • Boultwood J
        • Fidler C
        • Strickson AJ
        • et al.
        Transcription mapping of the 5q- syndrome critical region: cloning of two novel genes and sequencing, expression, and mapping of a further six novel cDNAs.
        Genomics. 2000; 66: 26-34
        • Boultwood J
        • Fidler C
        • Strickson AJ
        • et al.
        Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome.
        Blood. 2002; 99: 4638-4641
        • Fidler C
        • Wainscoat JS
        • Boultwood J
        The human POP2 gene: identification, sequencing, and mapping to the critical region of the 5q- syndrome.
        Genomics. 1999; 56: 134-136
        • Seghezzi L
        • Maserati E
        • Minelli A
        • et al.
        Constitutional trisomy 8 as first mutation in multistep carcinogenesis: clinical, cytogenetic, and molecular data on three cases.
        Genes Chromosomes Cancer. 1996; 17: 94-101
        • Dohner K
        • Brown J
        • Hehmann U
        • et al.
        Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders.
        Blood. 1998; 92: 4031-4035
        • Fischer K
        • Frohling S
        • Scherer SW
        • et al.
        Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias.
        Blood. 1997; 89: 2036-2041
        • Gonzalez MB
        • Gutierrez NC
        • Garcia JL
        • et al.
        Heterogeneity of structural abnormalities in the 7q31.3 approximately q34 region in myeloid malignancies.
        Cancer Genet Cytogenet. 2004; 150: 136-143
        • Nosslinger T
        • Reisner R
        • Koller E
        • et al.
        Myelodysplastic syndromes, from French-American-British to World Health Organization: comparison of classifications on 431 unselected patients from a single institution.
        Blood. 2001; 98: 2935-2941
        • Golub TR
        • Barker GF
        • Lovett M
        • Gilliland DG
        Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation.
        Cell. 1994; 77: 307-316
        • Tomasson MH
        • Sternberg DW
        • Williams IR
        • et al.
        Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581.
        J Clin Invest. 2000; 105: 423-432
        • Ross TS
        • Bernard OA
        • Berger R
        • Gilliland DG
        Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2).
        Blood. 1998; 91: 4419-4426
        • Schwaller J
        • Anastasiadou E
        • Cain D
        • et al.
        H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22).
        Blood. 2001; 97: 3910-3918
        • Magnusson MK
        • Meade KE
        • Brown KE
        • et al.
        Rabaptin-5 is a novel fusion partner to platelet-derived growth factor beta receptor in chronic myelomonocytic leukemia.
        Blood. 2001; 98: 2518-2525
        • Tomasson MH
        • Williams IR
        • Hasserjian R
        • et al.
        TEL/PDGFbetaR induces hematologic malignancies in mice that respond to a specific tyrosine kinase inhibitor.
        Blood. 1999; 93: 1707-1714
        • Ritchie KA
        • Aprikyan AA
        • Bowen-Pope DF
        • et al.
        The Tel-PDGFRbeta fusion gene produces a chronic myeloproliferative syndrome in transgenic mice.
        Leukemia. 1999; 13: 1790-1803
        • Apperley JF
        • Gardembas M
        • Melo JV
        • et al.
        Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta.
        N Engl J Med. 2002; 347: 481-487
        • Cain JA
        • Grisolano JL
        • Laird AD
        • Tomasson MH
        Complete remission of TEL-PDGFRB-induced myeloproliferative disease in mice by receptor tyrosine kinase inhibitor SU11657.
        Blood. 2004; 104: 561-564
        • Dewald GW
        • Ketterling RP
        • Wyatt WA
        • Stupca PJ
        Cytogenetic studies in neoplastic hematologic disorders.
        in: McClatchey KD Clinical Laboratory Medicine. 2nd ed. Lippincott Williams & Wilkins, Philadelphia, Pa2002: 658-685
        • Bench AJ
        • Nacheva EP
        • Hood TL
        • UK Cancer Cytogenetics Group (UKCCG)
        • et al.
        Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes.
        Oncogene. 2000; 19: 3902-3913
        • La Starza R
        • Wlodarska I
        • Aventin A
        • et al.
        Molecular delineation of 13q deletion boundaries in 20 patients with myeloid malignancies.
        Blood. 1998; 91: 231-237
        • Soenen V
        • Preudhomme C
        • Roumier C
        • Daudignon A
        • Lai JL
        • Fenaux P
        17p Deletion in acute myeloid leukemia and myelodysplastic syndrome: analysis of breakpoints and deleted segments by fluorescence in situ.
        Blood. 1998; 91: 1008-1015
        • Bernell P
        • Jacobsson B
        • Nordgren A
        • Hast R
        Clonal cell lineage involvement in myelodysplastic syndromes studied by fluorescence in situ hybridization and morphology.
        Leukemia. 1996; 10: 662-668
        • Gerritsen WR
        • Donohue J
        • Bauman J
        • et al.
        Clonal analysis of myelodysplastic syndrome: monosomy 7 is expressed in the myeloid lineage, but not in the lymphoid lineage as detected by fluorescent in situ hybridization.
        Blood. 1992; 80: 217-224
        • Boultwood J
        • Wainscoat JS
        Clonality in the myelodysplastic syndromes.
        Int J Hematol. 2001; 73: 411-415
        • van Lom K
        • Houtsmuller AB
        • van Putten WL
        • Slater RM
        • Lowenberg B
        Cytogenetic clonality analysis of megakaryocytes in myelodysplastic syndrome by dual-color fluorescence in situ hybridization and confocal laser scanning microscopy.
        Genes Chromosomes Cancer. 1999; 25: 332-338
        • Anderson K
        • Arvidsson I
        • Jacobsson B
        • Hast R
        Fluorescence in situ hybridization for the study of cell lineage involvement in myelodysplastic syndromes with chromosome 5 anomalies.
        Cancer Genet Cytogenet. 2002; 136: 101-107
        • Bigoni R
        • Cuneo A
        • Milani R
        • et al.
        Multilineage involvement in the 5q- syndrome: a fluorescent in situ hybridization study on bone marrow smears.
        Haematologica. 2001; 86: 375-381
        • Jaju RJ
        • Jones M
        • Boultwood J
        • et al.
        Combined immunophenotyping and FISH identifies the involvement of B-cells in 5q- syndrome.
        Genes Chromosomes Cancer. 2000; 29: 276-280
        • Fagioli F
        • Cuneo A
        • Bardi A
        • et al.
        Heterogeneity of lineage involvement by trisomy 8 in myelodysplastic syndrome: a multiparameter analysis combining conventional cytogenetics, DNA in situ hybridization, and bone marrow culture studies.
        Cancer Genet Cytogenet. 1995; 82: 116-122
        • Ketterling RP
        • Wyatt WA
        • VanWier SA
        • et al.
        Primary myelodysplastic syndrome with normal cytogenetics: utility of ‘FISH panel testing’ and M-FISH.
        Leuk Res. 2002; 26: 235-240
        • Cherry AM
        • Brockman SR
        • Paternoster SF
        • et al.
        Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome: an Eastern Cooperative Oncology Group (ECOG) study.
        Leuk Res. 2003; 27: 1085-1090
        • Andreasson P
        • Johansson B
        • Billstrom R
        • Garwicz S
        • Mitelman F
        • Hoglund M
        Fluorescence in situ hybridization analyses of hematologic malignancies reveal frequent cytogenetically unrecognized 12p rearrangements.
        Leukemia. 1998; 12: 390-400
        • Beyer V
        • Castagne C
        • Muhlematter D
        • et al.
        Systematic screening at diagnosis of -5/del(5)(q31), -7, or chromosome 8 aneuploidy by interphase fluorescence in situ hybridization in 110 acute myelocytic leukemia and high-risk myelodysplastic syndrome patients: concordances and discrepancies with conventional cytogenetics.
        Cancer Genet Cytogenet. 2004; 152: 29-41
        • Romeo M
        • Chauffaille MDL
        • Silva MRR
        • Bahia DMM
        • Kerbauy J
        Comparison of cytogenetics with FISH in 40 myelodysplastic syndrome patients.
        Leuk Res. 2002; 26: 993-996
        • Bernasconi P
        • Cavigliano PM
        • Boni M
        • et al.
        Is FISH a relevant prognostic tool in myelodysplastic syndromes with a normal chromosome pattern on conventional cytogenetics? a study on 57 patients.
        Leukemia. 2003; 17: 2107-2112
        • Kibbelaar RE
        • Mulder JW
        • Dreef EJ
        • et al.
        Detection of monosomy 7 and trisomy 8 in myeloid neoplasia: a comparison of banding and fluorescence in situ hybridization.
        Blood. 1993; 82: 904-913
        • Brizard F
        • Brizard A
        • Guilhot F
        • Tanzer J
        • Berger R
        Detection of monosomy 7 and trisomies 8 and 11 in myelodysplastic disorders by interphase fluorescent in situ hybridization: comparison with acute non-lymphocytic leukemias.
        Leukemia. 1994; 8: 1005-1011
        • van Dijk JP
        • de Witte T
        Monitoring treatment efficiency in MDS at the molecular level: possibilities now and in the future.
        Leuk Res. 2004; 28: 101-108
        • Le Gouill S
        • Talmant P
        • Milpied N
        • et al.
        Fluorescence in situ hybridization on peripheral-blood specimens is a reliable method to evaluate cytogenetic response in chronic myeloid leukemia.
        J Clin Oncol. 2000; 18: 1533-1538
        • Jalal SM
        • Law ME
        • Stamberg J
        • et al.
        Detection of diagnostically critical, often hidden, anomalies in complex karyotypes of haematological disorders using multicolour fluorescence in situ hybridization.
        Br J Haematol. 2001; 112: 975-980
        • Schrock E
        • du Manoir S
        • Veldman T
        • et al.
        Multicolor spectral karyotyping of human chromosomes.
        Science. 1996; 273: 494-497
        • Kakazu N
        • Taniwaki M
        • Horiike S
        • et al.
        Combined spectral karyotyping and DAPI banding analysis of chromosome abnormalities in myelodysplastic syndrome.
        Genes Chromosomes Cancer. 1999; 26: 336-345
        • Trost D
        • Hildebrandt B
        • Muller N
        • Germing U
        • Royer-Pokora B
        Hidden chromosomal aberrations are rare in primary myelodysplastic syndromes with evolution to acute myeloid leukaemia and normal cytogenetics.
        Leuk Res. 2004; 28: 171-177
        • Mohr B
        • Bornhauser M
        • Thiede C
        • et al.
        Comparison of spectral karyotyping and conventional cytogenetics in 39 patients with acute myeloid leukemia and myelodysplastic syndrome.
        Leukemia. 2000; 14: 1031-1038
        • Cohen N
        • Trakhtenbrot L
        • Yukla M
        • et al.
        SKY detection of chromosome rearrangements in two cases of tMDS with a complex karyotype.
        Cancer Genet Cytogenet. 2002; 138: 128-132
        • Lindvall C
        • Nordenskjold M
        • Porwit A
        • Bjorkholm M
        • Blennow E
        Molecular cytogenetic characterization of acute myeloid leukemia and myelodysplastic syndromes with multiple chromosome rearrangements.
        Haematologica. 2001; 86: 1158-1164
        • Van Limbergen H
        • Poppe B
        • Michaux L
        • et al.
        Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH.
        Genes Chromosomes Cancer. 2002; 33: 60-72
        • Pollack JR
        • Perou CM
        • Alizadeh AA
        • et al.
        Genome-wide analysis of DNA copy-number changes using cDNA microarrays.
        Nat Genet. 1999; 23: 41-46
        • Wilkens L
        • Burkhardt D
        • Tchinda J
        • et al.
        Cytogenetic aberrations in myelodysplastic syndrome detected by comparative genomic hybridization and fluorescence in situ hybridization.
        Diagn Mol Pathol. 1999; 8: 47-53
        • Kim MH
        • Stewart J
        • Devlin C
        • Kim YT
        • Boyd E
        • Connor M
        The application of comparative genomic hybridization as an additional tool in the chromosome analysis of acute myeloid leukemia and myelodysplastic syndromes.
        Cancer Genet Cytogenet. 2001; 126: 26-33
        • Ishkanian AS
        • Malloff CA
        • Watson SK
        • et al.
        A tiling resolution DNA microarray with complete coverage of the human genome.
        Nat Genet. 2004; 36: 299-303
        • Jonveaux P
        • Fenaux P
        • Quiquandon I
        • et al.
        Mutations in the p53 gene in myelodysplastic syndromes.
        Oncogene. 1991; 6: 2243-2247
        • Tsushita K
        • Hotta T
        • Ichikawa A
        • Saito H
        Mutation of p53 gene does not play a critical role in myelodysplastic syndrome and its transformation to acute leukaemia [letter].
        Br J Haematol. 1992; 81: 456-457
        • Sugimoto K
        • Hirano N
        • Toyoshima H
        • et al.
        Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia.
        Blood. 1993; 81: 3022-3026
        • Mori N
        • Hidai H
        • Yokota J
        • et al.
        Mutations of the p53 gene in myelodysplastic syndrome and overt leukemia.
        Leuk Res. 1995; 19: 869-875
        • Misawa S
        • Horiike S
        TP53 mutations in myelodysplastic syndrome.
        Leuk Lymphoma. 1996; 23: 417-422
        • Padua RA
        • Guinn BA
        • Al-Sabah AI
        • et al.
        RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up.
        Leukemia. 1998; 12: 887-892
        • Tang JL
        • Tien HF
        • Lin MT
        • Chen PJ
        • Chen YC
        P53 mutation in advanced stage of primary myelodysplastic syndrome.
        Anticancer Res. 1998; 18: 3757-3761
        • Kita-Sasai Y
        • Horiike S
        • Misawa S
        • et al.
        International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome.
        Br J Haematol. 2001; 115: 309-312
        • Imamura N
        • Abe K
        • Oguma N
        High incidence of point mutations of p53 suppressor oncogene in patients with myelodysplastic syndrome among atomic-bomb survivors: a 10-year follow-up [letter].
        Leukemia. 2002; 16: 154-156
        • Side LE
        • Curtiss NP
        • Teel K
        • et al.
        RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7.
        Genes Chromosomes Cancer. 2004; 39: 217-223
        • Horiike S
        • Kita-Sasai Y
        • Nakao M
        • Taniwaki M
        Configuration of the TP53 gene as an independent prognostic parameter of myelodysplastic syndrome.
        Leuk Lymphoma. 2003; 44: 915-922
        • Soong R
        • Robbins PD
        • Dix BR
        • et al.
        Concordance between p53 protein overexpression and gene mutation in a large series of common human carcinomas.
        Hum Pathol. 1996; 27: 1050-1055
        • Baas IO
        • Mulder JW
        • Offerhaus GJ
        • Vogelstein B
        • Hamilton SR
        An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms.
        J Pathol. 1994; 172: 5-12
        • Gross E
        • Kiechle M
        • Arnold N
        Mutation analysis of p53 in ovarian tumors by DHPLC.
        J Biochem Biophys Methods. 2001; 47: 73-81
        • Plata E
        • Viniou N
        • Abazis D
        • et al.
        Cytogenetic analysis and RAS mutations in primary myelodysplastic syndromes.
        Cancer Genet Cytogenet. 1999; 111: 124-129
        • de Souza Fernandez T
        • Menezes de Souza J
        • Macedo Silva ML
        • Tabak D
        • Abdelhay E
        Correlation of N-ras point mutations with specific chromosomal abnormalities in primary myelodysplastic syndrome.
        Leuk Res. 1998; 22: 125-134
        • Paquette RL
        • Landaw EM
        • Pierre RV
        • et al.
        N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome.
        Blood. 1993; 82: 590-599
        • Shih LY
        • Huang CF
        • Wang PN
        • et al.
        Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia.
        Leukemia. 2004; 18: 466-475
        • Mitani K
        • Hangaishi A
        • Imamura N
        • et al.
        No concomitant occurrence of the N-ras and p53 gene mutations in myelodysplastic syndromes.
        Leukemia. 1997; 11: 863-865
        • Horiike S
        • Yokota S
        • Nakao M
        • et al.
        Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia.
        Leukemia. 1997; 11: 1442-1446
        • Kiyoi H
        • Towatari M
        • Yokota S
        • et al.
        Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product.
        Leukemia. 1998; 12: 1333-1337
        • Yokota S
        • Kiyoi H
        • Nakao M
        • et al.
        Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies: a study on a large series of patients and cell lines.
        Leukemia. 1997; 11: 1605-1609
        • Au WY
        • Fung AT
        • Ma ES
        • Liang RH
        • Kwong YL
        Low frequency of FLT3 gene internal tandem duplication and activating loop mutation in therapy-related acute myelocytic leukemia and myelodysplastic syndrome.
        Cancer Genet Cytogenet. 2004; 149: 169-172
        • Imai Y
        • Kurokawa M
        • Izutsu K
        • et al.
        Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis.
        Blood. 2000; 96: 3154-3160
        • Preudhomme C
        • Warot-Loze D
        • Roumier C
        • et al.
        High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21.
        Blood. 2000; 96: 2862-2869
        • Imai O
        • Kurokawa M
        • Izutsu K
        • et al.
        Mutational analyses of the AML1 gene in patients with myelodysplastic syndrome.
        Leuk Lymphoma. 2002; 43: 617-621
        • Harada H
        • Harada Y
        • Tanaka H
        • Kimura A
        • Inaba T
        Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia.
        Blood. 2003; 101: 673-680
        • Roumier C
        • Fenaux P
        • Lafage M
        • Imbert M
        • Eclache V
        • Preudhomme C
        New mechanisms of AML1 gene alteration in hematological malignancies.
        Leukemia. 2003; 17: 9-16
        • Christiansen DH
        • Andersen MK
        • Pedersen-Bjergaard J
        Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation.
        Blood. 2004; 104: 1474-1481
        • Harada H
        • Harada Y
        • Niimi H
        • Kyo T
        • Kimura A
        • Inaba T
        High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia.
        Blood. 2004; 103: 2316-2324
        • Steensma DP
        • Gibbons RJ
        • Mesa RA
        • Tefferi A
        • Higgs DR
        Somatic point mutations in RUNX1/CBFA2/AML1 are common in high-risk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia.
        Eur J Haematol. 2005; 74: 47-53
        • Gibbons RJ
        • Pellagatti A
        • Garrick D
        • et al.
        Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the alpha-thalassemia myelodysplasia syndrome (ATMDS).
        Nat Genet. 2003; 34: 446-449
        • Steensma DP
        • Higgs DR
        • Fisher CA
        • Gibbons RJ
        Acquired somatic ATRX mutations in myelodysplastic syndrome associated with alpha thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations.
        Blood. 2004; 103: 2019-2026
        • Gibbons RJ
        • Higgs DR
        Molecular-clinical spectrum of the ATR-X syndrome.
        Am J Med Genet. 2000; 97: 204-212
        • Steensma DP
        • Gibbons RJ
        • Higgs DR
        Acquired alpha-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies.
        Blood. 2005; 105: 443-452
        • Stephenson J
        • Mufti GJ
        • Yoshida Y
        Myelodysplastic syndromes: from morphology to molecular biology, part II: the molecular genetics of myelodysplasia.
        Int J Hematol. 1993; 57: 99-112
        • Springall F
        • O'Mara S
        • Shounan Y
        • Todd A
        • Ford D
        • Iland H
        c-fms point mutations in acute myeloid leukemia: fact or fiction?.
        Leukemia. 1993; 7: 978-985
        • Watkins F
        • Fidler C
        • Boultwood J
        • Wainscoat JS
        Mutations in PTPN11 are rare in adult myelodysplastic syndromes and acute myeloid leukemia [letter].
        Am J Hematol. 2004; 76: 417
        • Tartaglia M
        • Niemeyer CM
        • Fragale A
        • et al.
        Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.
        Nat Genet. 2003; 34: 148-150
        • Trulzsch B
        • Krohn K
        • Wonerow P
        • Paschke R
        DGGE is more sensitive for the detection of somatic point mutations than direct sequencing.
        Biotechniques. 1999; 27: 266-268
        • Emmerson P
        • Maynard J
        • Jones S
        • Butler R
        • Sampson JR
        • Cheadle JP
        Characterizing mutations in samples with low-level mosaicism by collection and analysis of DHPLC fractionated heteroduplexes.
        Hum Mutat. 2003; 21: 112-115
        • Ellis LA
        • Taylor CF
        • Taylor GR
        A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutation scanning.
        Hum Mutat. 2000; 15: 556-564
        • Faustino NA
        • Cooper TA
        Pre-mRNA splicing and human disease.
        Genes Dev. 2003; 17: 419-437
      3. Steensma DP, Allen SL, Gibbons RJ, Fisher CA, Higgs DR. A novel splicing mutation in the gene encoding the chromatin-associated factor ATRX associated with acquired hemoglobin H disease in myelodysplastic syndrome (ATMDS) [abstract]. In: Program and abstracts of the American Society of Hematology 46th Annual Meeting; San Diego, Calif; December 4-7, 2004. Abstract 3606.

        • Reddy PL
        • Shetty VT
        • Dutt D
        • et al.
        Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes.
        Br J Haematol. 2002; 116: 564-575
        • Gattermann N
        • Aul C
        • Schneider W
        Is acquired idiopathic sideroblastic anemia (AISA) a disorder of mitochondrial DNA?.
        Leukemia. 1993; 7: 2069-2076
        • Shin MG
        • Kajigaya S
        • Levin BC
        • Young NS
        Mitochondrial DNA mutations in patients with myelodysplastic syndromes.
        Blood. 2003; 101: 3118-3125
        • Gattermann N
        • Wulfert M
        • Junge B
        • Germing U
        • Haas R
        • Hofhaus G
        Ineffective hematopoiesis linked with a mitochondrial tRNA mutation (G3242A) in a patient with myelodysplastic syndrome.
        Blood. 2004; 103: 1499-1502
        • Herman JG
        • Baylin SB
        Gene silencing in cancer in association with promoter hypermethylation.
        N Engl J Med. 2003; 349: 2042-2054
        • Jones PA
        • Laird PW
        Cancer epigenetics comes of age.
        Nat Genet. 1999; 21: 163-167
        • Herman JG
        Hypermethylation of tumor suppressor genes in cancer.
        Semin Cancer Biol. 1999; 9: 359-367
        • Preisler HD
        • Li B
        • Chen H
        • et al.
        P15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients.
        Leukemia. 2001; 15: 1589-1595
        • Quesnel B
        • Fenaux P
        P15INK4b gene methylation and myelodysplastic syndromes.
        Leuk Lymphoma. 1999; 35: 437-443
        • Tien HF
        • Tang JH
        • Tsay W
        • et al.
        Methylation of the p15(INK4B) gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation.
        Br J Haematol. 2001; 112: 148-154
        • Uchida T
        • Kinoshita T
        • Nagai H
        • et al.
        Hypermethylation of the p15INK4B gene in myelodysplastic syndromes.
        Blood. 1997; 90: 1403-1409
        • Uchida T
        • Kinoshita T
        • Hotta T
        • Murate T
        High-risk myelodysplastic syndromes and hypermethylation of the p15Ink4B gene.
        Leuk Lymphoma. 1998; 32: 9-18
        • Aoki E
        • Uchida T
        • Ohashi H
        • et al.
        Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes.
        Leukemia. 2000; 14: 586-593
        • Leone G
        • Teofili L
        • Voso MT
        • Lubbert M
        DNA methylation and demethylating drugs in myelodysplastic syndromes and secondary leukemias.
        Haematologica. 2002; 87: 1324-1341
        • Daskalakis M
        • Nguyen TT
        • Nguyen C
        • et al.
        Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment.
        Blood. 2002; 100: 2957-2964
        • Gore SD
        • Weng LJ
        • Figg WD
        • et al.
        Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia.
        Clin Cancer Res. 2002; 8: 963-970
        • Totzke G
        • Bruning T
        • Vetter H
        • Schulze-Osthoff K
        • Ko Y
        P53 downregulation in myelodysplastic syndrome—a quantitative analysis by competitive RT-PCR [letter].
        Leukemia. 2001; 15: 1663-1664
        • Tefferi A
        • Bolander ME
        • Ansell SM
        • Wieben ED
        • Spelsberg TC
        Primer on medical genomics, part III: microarray experiments and data analysis.
        Mayo Clin Proc. 2002; 77: 927-940
        • Miyazato A
        • Ueno S
        • Ohmine K
        • et al.
        Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction.
        Blood. 2001; 98: 422-427
        • Hofmann WK
        • de Vos S
        • Komor M
        • Hoelzer D
        • Wachsman W
        • Koeffler HP
        Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow.
        Blood. 2002; 100: 3553-3560
        • Ueda M
        • Ota J
        • Yamashita Y
        • et al.
        DNA microarray analysis of stage progression mechanism in myelodysplastic syndrome.
        Br J Haematol. 2003; 123: 288-296
        • Pellagatti A
        • Esoof N
        • Watkins F
        • et al.
        Gene expression profiling in the myelodysplastic syndromes using cDNA microarray technology.
        Br J Haematol. 2004; 125: 576-583
        • Lossos IS
        • Czerwinski DK
        • Alizadeh AA
        • et al.
        Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes.
        N Engl J Med. 2004; 350: 1828-1837
        • van de Vijver MJ
        • He YD
        • van't Veer LJ
        • et al.
        A gene-expression signature as a predictor of survival in breast cancer.
        N Engl J Med. 2002; 347: 1999-2009