Abstract
Objective
Patients and Methods
Results
Conclusion
Abbreviations and Acronyms:
LDL (low-density lipoprotein), NDF-RT (National Drug File–Reference Terminology), NHANES (National Health and Nutrition Examination Survey), REP (Rochester Epidemiology Project)National Center for Health Statistics. Health, United States, 2011: with special feature on socioeconomic status and health. http://www.cdc.gov/nchs/data/hus/hus11.pdf. Accessed April 12, 2013.
National Center for Health Statistics. Health, United States, 2011: with special feature on socioeconomic status and health. http://www.cdc.gov/nchs/data/hus/hus11.pdf. Accessed April 12, 2013.
Centers for Disease Control and Prevention (CDC). Unintentional drug poisoning in the United States. http://www.cdc.gov/HomeandRecreationalSafety/pdf/poison-issue-brief.pdf. Published July 2010. Accessed April 12, 2013.
Lucado J, Paez K, Elixhauser A. Medication-related adverse outcomes in U.S. hospitals and emergency departments, 2008. HCUP Statistical Brief #109. http://www.hcup-us.ahrq.gov/reports/statbriefs/sb109.pdf. Published April 2011. Accessed May 23, 2013.
Wennberg J, Cooper M. The Dartmouth atlas of health care in the US; 1999. http://www.dartmouthatlas.org/downloads/atlases/99Atlas.pdf. Accessed May 23, 2013.
Wennberg J, Wennberg D. Practice variations and the use of prescription drugs: Dartmouth atlas of health care in Michigan 2000. http://www.bcbsm.com/content/dam/public/Consumer/Documents/about-us/dartmouth-atlas.pdf. Accessed May 23, 2013.
Patients and Methods
Study Population
Drug Prescription Records
Statistical Analyses
Results
Overall Prevalence
Drug group | Age (y) b Numbers indicate the actual number of cases observed. Prevalence can be computed by dividing the number of cases by the corresponding denominator listed next (and multiplying by 100). Denominators for men/boys and women/girls combined: 0-18 y, 38,558; 19-29 y, 23,968; 30-49 y, 37,927; 50-64 y, 24,588; and ≥65 y, 17,336. Denominators for men/boys: 0-18 y, 19,611; 19-29 y, 10,337; 30-49 y, 17,888; 50-64 y, 11,496; and ≥65 y, 7533. Denominators for women/girls: 0-18 y, 18,947; 19-29 y, 13,631; 30-49 y, 20,039; 50-64 y, 13,092; and ≥65 y, 9803. | All ages | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0-18 | 19-29 | 30-49 | 50-64 | ≥65 | Crude | Standardized % | |||||||
No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | ||
Penicillins and β-lactam antimicrobials | |||||||||||||
Both sexes | 8771 | 22.75 | 3177 | 13.26 | 5563 | 14.67 | 3462 | 14.08 | 2761 | 15.93 | 23,734 | 16.67 | 16.60 |
Men/boys | 4377 | 22.32 | 1035 | 10.01 | 2170 | 12.13 | 1433 | 12.47 | 1181 | 15.68 | 10,196 | 15.25 | 15.07 |
Women/girls | 4394 | 23.19 | 2142 | 15.71 | 3393 | 16.93 | 2029 | 15.50 | 1580 | 16.12 | 13,538 | 17.93 | 18.13 |
Antidepressants | |||||||||||||
Both sexes | 1010 | 2.62 | 2663 | 11.11 | 6310 | 16.64 | 4900 | 19.93 | 3145 | 18.14 | 18,028 | 12.66 | 12.51 |
Men/boys | 409 | 2.09 | 766 | 7.41 | 1953 | 10.92 | 1493 | 12.99 | 978 | 12.98 | 5599 | 8.37 | 8.56 |
Women/girls | 601 | 3.17 | 1897 | 13.92 | 4357 | 21.74 | 3407 | 26.02 | 2167 | 22.11 | 12,429 | 16.46 | 16.21 |
Opioid analgesics | |||||||||||||
Both sexes | 1606 | 4.17 | 2898 | 12.09 | 5258 | 13.86 | 3844 | 15.63 | 3348 | 19.31 | 16,954 | 11.91 | 11.84 |
Men/boys | 847 | 4.32 | 1064 | 10.29 | 2117 | 11.83 | 1706 | 14.84 | 1354 | 17.97 | 7088 | 10.60 | 10.77 |
Women/girls | 759 | 4.01 | 1834 | 13.45 | 3141 | 15.67 | 2138 | 16.33 | 1994 | 20.34 | 9866 | 13.07 | 12.85 |
Antilipemic agents | |||||||||||||
Both sexes | 15 | 0.04 | 127 | 0.53 | 2539 | 6.69 | 6377 | 25.94 | 7024 | 40.52 | 16,082 | 11.30 | 11.07 |
Men/boys | 10 | 0.05 | 77 | 0.74 | 1635 | 9.14 | 3386 | 29.45 | 3292 | 43.70 | 8400 | 12.56 | 12.73 |
Women/girls | 5 | 0.03 | 50 | 0.37 | 904 | 4.51 | 2991 | 22.85 | 3732 | 38.07 | 7682 | 10.17 | 9.57 |
Vaccines/toxoids | |||||||||||||
Both sexes | 8926 | 23.15 | 1878 | 7.84 | 2259 | 5.96 | 1742 | 7.08 | 1113 | 6.42 | 15,918 | 11.18 | 11.07 |
Men/boys | 4330 | 22.08 | 550 | 5.32 | 1048 | 5.86 | 798 | 6.94 | 481 | 6.39 | 7207 | 10.78 | 10.40 |
Women/girls | 4596 | 24.26 | 1328 | 9.74 | 1211 | 6.04 | 944 | 7.21 | 632 | 6.45 | 8711 | 11.54 | 11.77 |
Antiasthmatics | |||||||||||||
Both sexes | 3921 | 10.17 | 1697 | 7.08 | 3520 | 9.28 | 2477 | 10.07 | 2080 | 12.00 | 13,695 | 9.62 | 9.56 |
Men/boys | 2138 | 10.90 | 538 | 5.20 | 1208 | 6.75 | 827 | 7.19 | 819 | 10.87 | 5530 | 8.27 | 8.22 |
Women/girls | 1783 | 9.41 | 1159 | 8.50 | 2312 | 11.54 | 1650 | 12.60 | 1261 | 12.86 | 8165 | 10.81 | 10.83 |
Topical anti-infective/anti-inflammatory agents | |||||||||||||
Both sexes | 2952 | 7.66 | 1529 | 6.38 | 3122 | 8.23 | 2840 | 11.55 | 2819 | 16.26 | 13,262 | 9.31 | 9.22 |
Men/boys | 1467 | 7.48 | 503 | 4.87 | 1144 | 6.40 | 1130 | 9.83 | 1229 | 16.31 | 5473 | 8.19 | 8.20 |
Women/girls | 1485 | 7.84 | 1026 | 7.53 | 1978 | 9.87 | 1710 | 13.06 | 1590 | 16.22 | 7789 | 10.31 | 10.23 |
Erythromycins/macrolides | |||||||||||||
Both sexes | 3364 | 8.72 | 1843 | 7.69 | 3963 | 10.45 | 2385 | 9.70 | 1507 | 8.69 | 13,062 | 9.17 | 9.13 |
Men/boys | 1653 | 8.43 | 513 | 4.96 | 1360 | 7.60 | 906 | 7.88 | 598 | 7.94 | 5030 | 7.52 | 7.51 |
Women/girls | 1711 | 9.03 | 1330 | 9.76 | 2603 | 12.99 | 1479 | 11.30 | 909 | 9.27 | 8032 | 10.64 | 10.71 |
Gastrointestinal medications, other | |||||||||||||
Both sexes | 395 | 1.02 | 998 | 4.16 | 3074 | 8.11 | 3321 | 13.51 | 3253 | 18.76 | 11,041 | 7.75 | 7.70 |
Men/boys | 184 | 0.94 | 373 | 3.61 | 1319 | 7.37 | 1370 | 11.92 | 1276 | 16.94 | 4522 | 6.76 | 6.92 |
Women/girls | 211 | 1.11 | 625 | 4.59 | 1755 | 8.76 | 1951 | 14.90 | 1977 | 20.17 | 6519 | 8.63 | 8.39 |
Laxatives | |||||||||||||
Both sexes | 675 | 1.75 | 727 | 3.03 | 2352 | 6.20 | 3858 | 15.69 | 2705 | 15.60 | 10,317 | 7.25 | 7.05 |
Men/boys | 303 | 1.55 | 199 | 1.93 | 863 | 4.82 | 1761 | 15.32 | 1235 | 16.39 | 4361 | 6.52 | 6.50 |
Women/girls | 372 | 1.96 | 528 | 3.87 | 1489 | 7.43 | 2097 | 16.02 | 1470 | 15.00 | 5956 | 7.89 | 7.63 |
β-Blockers and related medications | |||||||||||||
Both sexes | 77 | 0.20 | 235 | 0.98 | 1357 | 3.58 | 3201 | 13.02 | 5229 | 30.16 | 10,099 | 7.09 | 6.97 |
Men/boys | 34 | 0.17 | 76 | 0.74 | 633 | 3.54 | 1717 | 14.94 | 2420 | 32.13 | 4880 | 7.30 | 7.45 |
Women/girls | 43 | 0.23 | 159 | 1.17 | 724 | 3.61 | 1484 | 11.34 | 2809 | 28.65 | 5219 | 6.91 | 6.59 |
ACE inhibitors | |||||||||||||
Both sexes | 30 | 0.08 | 112 | 0.47 | 1455 | 3.84 | 3418 | 13.90 | 4740 | 27.34 | 9755 | 6.85 | 6.75 |
Men/boys | 19 | 0.10 | 75 | 0.73 | 879 | 4.91 | 1920 | 16.70 | 2190 | 29.07 | 5083 | 7.60 | 7.73 |
Women/girls | 11 | 0.06 | 37 | 0.27 | 576 | 2.87 | 1498 | 11.44 | 2550 | 26.01 | 4672 | 6.19 | 5.87 |
Diuretics | |||||||||||||
Both sexes | 46 | 0.12 | 147 | 0.61 | 1368 | 3.61 | 3100 | 12.61 | 5092 | 29.37 | 9753 | 6.85 | 6.75 |
Men/boys | 21 | 0.11 | 54 | 0.52 | 550 | 3.07 | 1313 | 11.42 | 1969 | 26.14 | 3907 | 5.84 | 5.99 |
Women/girls | 25 | 0.13 | 93 | 0.68 | 818 | 4.08 | 1787 | 13.65 | 3123 | 31.86 | 5846 | 7.74 | 7.37 |
Topical nasal and throat agents | |||||||||||||
Both sexes | 1419 | 3.68 | 1088 | 4.54 | 2766 | 7.29 | 2202 | 8.96 | 1635 | 9.43 | 9110 | 6.40 | 6.37 |
Men/boys | 822 | 4.19 | 381 | 3.69 | 1090 | 6.09 | 909 | 7.91 | 702 | 9.32 | 3904 | 5.84 | 5.88 |
Women/girls | 597 | 3.15 | 707 | 5.19 | 1676 | 8.36 | 1293 | 9.88 | 933 | 9.52 | 5206 | 6.89 | 6.84 |
Antihistamines | |||||||||||||
Both sexes | 2013 | 5.22 | 1330 | 5.55 | 2655 | 7.00 | 1919 | 7.80 | 1117 | 6.44 | 9034 | 6.35 | 6.28 |
Men/boys | 1092 | 5.57 | 395 | 3.82 | 876 | 4.90 | 614 | 5.34 | 404 | 5.36 | 3381 | 5.06 | 5.04 |
Women/girls | 921 | 4.86 | 935 | 6.86 | 1779 | 8.88 | 1305 | 9.97 | 713 | 7.27 | 5653 | 7.49 | 7.45 |
Antirheumatics | |||||||||||||
Both sexes | 989 | 2.56 | 1325 | 5.53 | 2798 | 7.38 | 2108 | 8.57 | 1153 | 6.65 | 8373 | 5.88 | 5.83 |
Men/boys | 466 | 2.38 | 430 | 4.16 | 1113 | 6.22 | 898 | 7.81 | 469 | 6.23 | 3376 | 5.05 | 5.10 |
Women/girls | 523 | 2.76 | 895 | 6.57 | 1685 | 8.41 | 1210 | 9.24 | 684 | 6.98 | 4997 | 6.62 | 6.54 |
Sedatives/hypnotics | |||||||||||||
Both sexes | 205 | 0.53 | 969 | 4.04 | 2816 | 7.42 | 2282 | 9.28 | 1635 | 9.43 | 7907 | 5.55 | 5.53 |
Men/boys | 93 | 0.47 | 308 | 2.98 | 1059 | 5.92 | 885 | 7.70 | 611 | 8.11 | 2956 | 4.42 | 4.54 |
Women/girls | 112 | 0.59 | 661 | 4.85 | 1757 | 8.77 | 1397 | 10.67 | 1024 | 10.45 | 4951 | 6.56 | 6.45 |
Adrenal corticosteroids | |||||||||||||
Both sexes | 1498 | 3.89 | 799 | 3.33 | 1982 | 5.23 | 1559 | 6.34 | 1549 | 8.94 | 7387 | 5.19 | 5.17 |
Men/boys | 862 | 4.40 | 302 | 2.92 | 726 | 4.06 | 587 | 5.11 | 657 | 8.72 | 3134 | 4.69 | 4.71 |
Women/girls | 636 | 3.36 | 497 | 3.65 | 1256 | 6.27 | 972 | 7.42 | 892 | 9.10 | 4253 | 5.63 | 5.61 |
Quinolones | |||||||||||||
Both sexes | 191 | 0.50 | 969 | 4.04 | 2009 | 5.30 | 1899 | 7.72 | 2272 | 13.11 | 7340 | 5.16 | 5.08 |
Men/boys | 63 | 0.32 | 237 | 2.29 | 662 | 3.70 | 736 | 6.40 | 863 | 11.46 | 2561 | 3.83 | 3.94 |
Women/girls | 128 | 0.68 | 732 | 5.37 | 1347 | 6.72 | 1163 | 8.88 | 1409 | 14.37 | 4779 | 6.33 | 6.15 |
Systemic contraceptives | |||||||||||||
Both sexes | … | … | … | … | … | … | … | … | … | … | … | … | … |
Men/boys | … | … | … | … | … | … | … | … | … | … | … | … | … |
Women/girls | 880 | 4.64 | 3352 | 24.59 | 2575 | 12.85 | 170 | 1.30 | 18 | 0.18 | 6995 | 9.26 | 9.10 |
Prevalence by Age and Sex


Discussion
Overall Findings
Specific Drug Groups
Strengths and Limitations
National Center for Health Statistics. Health, United States, 2011: with special feature on socioeconomic status and health. http://www.cdc.gov/nchs/data/hus/hus11.pdf. Accessed April 12, 2013.
Conclusion
Acknowledgments
Supplemental Online Material
- Supplemental Table 1
- Supplemental Table 2
References
- Prescription drug use continues to increase: U.S. prescription drug data for 2007-2008.NCHS Data Brief. 2010; 42: 1-8
National Center for Health Statistics. Health, United States, 2011: with special feature on socioeconomic status and health. http://www.cdc.gov/nchs/data/hus/hus11.pdf. Accessed April 12, 2013.
- CDC grand rounds: prescription drug overdoses: a U.S. epidemic.MMWR Morb Mortal Wkly Rep. 2012; 61: 10-13
Centers for Disease Control and Prevention (CDC). Unintentional drug poisoning in the United States. http://www.cdc.gov/HomeandRecreationalSafety/pdf/poison-issue-brief.pdf. Published July 2010. Accessed April 12, 2013.
Lucado J, Paez K, Elixhauser A. Medication-related adverse outcomes in U.S. hospitals and emergency departments, 2008. HCUP Statistical Brief #109. http://www.hcup-us.ahrq.gov/reports/statbriefs/sb109.pdf. Published April 2011. Accessed May 23, 2013.
- Correlating pharmaceutical data with a national health survey as a proxy for estimating rural population health.Popul Health Metr. 2010; 8: 25
- Evaluating heart disease prescriptions-filled as a proxy for heart disease prevalence rates.J Health Hum Serv Adm. 2008; 30: 503-528
- Geographic variation in Medicare drug spending.N Engl J Med. 2010; 363: 405-409
Wennberg J, Cooper M. The Dartmouth atlas of health care in the US; 1999. http://www.dartmouthatlas.org/downloads/atlases/99Atlas.pdf. Accessed May 23, 2013.
Wennberg J, Wennberg D. Practice variations and the use of prescription drugs: Dartmouth atlas of health care in Michigan 2000. http://www.bcbsm.com/content/dam/public/Consumer/Documents/about-us/dartmouth-atlas.pdf. Accessed May 23, 2013.
- Prescription drug use, diagnoses, and healthcare utilization among the elderly.Ann Pharmacother. 2001; 35: 1004-1009
- Identifying how age and gender influence prescription drug use in a primary health care environment in Catalonia, Spain.Br J Clin Pharmacol. 2008; 65: 407-417
- Morgan S. Raymond C. Mooney D. Martin D. The Canadian Rx Atlas. 2nd ed. Centre for Health Services and Policy Research, University of British Columbia, Vancouver2008
- Getting What We Deserve: Health and Medical Care in America.Johns Hopkins University Press, Baltimore, MD2009
- Drug use in the United States in 1981.JAMA. 1984; 251: 1293-1297
- Drug use and expenditures in 1982.JAMA. 1985; 253: 382-386
- Prescription drug use in 1984 and changes over time.Med Care. 1988; 26: 105-114
- Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey.JAMA. 2002; 287: 337-344
- Influence of age, sex, and race on prescription drug use among Georgia Medicaid recipients.Am J Hosp Pharm. 1989; 46: 287-290
- Outpatient prescription drug utilization and expenditure patterns of noninstitutionalized aged Medicare beneficiaries.Natl Med Care Util Expend Surv B. 1987; 12: 1-43
- Gender- and age-related prescription drug use patterns.Ann Pharmacother. 2002; 36: 30-39
- Use of chronic medications among a large, commercially-insured US population.Pharmacoepidemiol Drug Saf. 2002; 11: 301-309
- Patterns of outpatient prescription drug use among Pennsylvania elderly.Health Care Financ Rev. 1991; 12: 61-72
- Differences in prescription drug utilization and expenditures between Blacks and Whites in the Georgia Medicaid population.Inquiry. 1998; 35: 78-87
- Unfilled prescriptions of Medicare beneficiaries: prevalence, reasons, and types of medicines prescribed.J Manag Care Pharm. 2008; 14: 553-560
- Use of a medical records linkage system to enumerate a dynamic population over time: the Rochester Epidemiology Project.Am J Epidemiol. 2011; 173: 1059-1068
- Generalizability of epidemiological findings and public health decisions: an illustration from the Rochester Epidemiology Project.Mayo Clin Proc. 2012; 87: 151-160
- History of the Rochester Epidemiology Project: half a century of medical records linkage in a US population.Mayo Clin Proc. 2012; 87: 1202-1213
- Data resource profile: the Rochester Epidemiology Project (REP) medical records-linkage system.Int J Epidemiol. 2012; 41: 1614-1624
- Analyzing categorical information in two publicly available drug terminologies: RxNorm and NDF-RT.J Am Med Inform Assoc. 2010; 17: 432-439
- Using RxNorm and NDF-RT to classify medication data extracted from electronic health records: experiences from the Rochester Epidemiology Project.AMIA Annu Symp Proc. 2011; 2011: 1089-1098
- On epidemiologic surveys.Am J Epidemiol. 1983; 118: 613-619
- Boundaries of statistical inference.in: Smith H. Johnson N.L. New Developments in Survey Sampling. Wiley-Interscience, New York, NY1969: 652-670
- Incidence of dementia and Alzheimer's disease: a reanalysis of data from Rochester, Minnesota, 1975-1984.Am J Epidemiol. 1998; 148: 51-62
- Frequency estimates from prescription drug datasets (revision of #04-11-066A).Pharmacoepidemiol Drug Saf. 2006; 15: 512-520
- Heart disease and stroke statistics—2012 update: a report from the American Heart Association [published correction appears in Circulation. 2012;125(22):e1002].Circulation. 2012; 125: e2-e220
- Constructions of masculinity and their influence on men's well-being: a theory of gender and health.Soc Sci Med. 2000; 50: 1385-1401
- Migraine: epidemiology, impact, and risk factors for progression.Headache. 2005; 45: S3-S13
- Smolinski M.S. Hamburg M.A. Lederberg J. Microbial Threats to Health: Emergence, Detection, and Response. The National Academies Press, Washington, DC2003
- Gender and age differences in medications dispensed from a national chain drugstore.J Womens Health (Larchmt). 2008; 17: 735-743
- Current depression among adults—United States, 2006 and 2008.MMWR Morb Mortal Wkly Rep. 2010; 59: 1229-1235
- National patterns in antidepressant medication treatment.Arch Gen Psychiatry. 2009; 66: 848-856
- Increase in antidepressant medication in the US adult population between 1990 and 2003.Psychother Psychosom. 2008; 77: 83-92
- Proportion of antidepressants prescribed without a psychiatric diagnosis is growing.Health Aff (Millwood). 2011; 30: 1434-1442
- Prevalence and characteristics of opioid use in the US adult population.Pain. 2008; 138: 507-513
- Sex differences in pain perception.Gend Med. 2005; 2: 137-145
- Sex differences in pain.Behav Brain Sci. 1997; 20: 371-380
- An evaluation of sex differences in psychological and physiological responses to experimentally-induced pain: a path analytic description.Pain. 2004; 112: 188-196
- Why patients visit their doctors: assessing the most prevalent conditions in a defined American population.Mayo Clin Proc. 2013; 88: 56-67
- Vital signs: prevalence, treatment, and control of high levels of low-density lipoprotein cholesterol—United States, 1999-2002 and 2005-2008.MMWR Morb Mortal Wkly Rep. 2011; 60: 109-114
- Implications of the accuracy of MEPS prescription drug data for health services research.Inquiry. 2011; 48: 242-259
Article Info
Publication History
Footnotes
Grant Support: This study was made possible by the Rochester Epidemiology Project (grant number R01 AG034676 ; Principal Investigators: Walter A. Rocca, MD, MPH, and Barbara P. Yawn, MD, MSc). Additionally, this publication was supported by the Mayo Clinic Center for the Science of Healthcare Delivery .